ON PROJECTIONS OF $L^\infty(G)$
ONTO TRANSLATION-INvariant SUBSPACES

BY

W. CHOJNACKI (WARSZAWA)

1. Introduction. Let G be a locally compact Abelian group with the
Haar measure μ. Let Φ be a translation-invariant $*$-weakly closed subspace
of $L^\infty(G)$. Regard $L^\infty(G)$ and Φ as Banach spaces with the norm topology
of $L^\infty(G)$. The present note is a contribution to solution of the following
problem (P 1042): when is Φ complemented in $L^\infty(G)$? Let \hat{G} be the dual
group of G. Denote by $\sigma(\Phi)$ the spectrum of Φ, i.e., the set $\{\chi \in \hat{G}: \chi \in \Phi\}.
If $\Phi \neq \{0\}$, then $\sigma(\Phi) \neq \emptyset$. The main result of this note is Theorem 2
which gives a sufficient condition for Φ to be uncomplemented in $L^\infty(G)$
expressed in terms of $\sigma(\Phi)$.

2. Some examples. The first example of a complemented subspace
is the most general. Let Φ have a finite spectrum. Then Φ is the $*$-weak
closure of the linear space spanned by $\sigma(\Phi)$. Hence Φ is finite-dimensional and complemented in $L^\infty(G)$.

The second example involves a group G of a special type. Let $G
= G_1 \oplus G_2$, where G_1 and G_2 are locally compact Abelian groups. Let $\mu_1
be the Haar measure on G_1. Let

$$ I = \left\{ f \in L^1(G): \int\limits_{G_1} f(s, t) \mu_1(ds) = 0 \text{ for almost all } t \in G_2 \right\}. $$

I is a closed ideal in the group algebra $L^1(G)$, i.e., a translation-invariant closed subspace of $L^1(G)$. Let $g \in L^1(G_1)$ and

$$ \int\limits_{G_1} g \mu_1 = 1. $$

Write

$$ Pf(s, t) = f(s, t) - g(s) \int\limits_{G_1} f(u, t) \mu_1(du), \quad s \in G_1, t \in G_2. $$

P is a continuous projection of $L^1(G)$ onto I. Denote by $\text{Ann}I$ the
annihilator of I, i.e., the set

$$ \{ \varphi \in L^\infty(G): \langle f, \varphi \rangle = 0 \text{ for every } f \in I \}, $$
where

$$\langle f, \varphi \rangle = \int_G f \varphi \, d\mu, \quad f \in L^1(G), \ \varphi \in L^\infty(G).$$

An I is a translation-invariant *-weakly closed subspace of $L^\infty(G)$, and $Q = E - P'$ is a continuous projection of $L^\infty(G)$ onto $\text{An} \ I$, where E denotes the identity operator on $L^\infty(G)$. The spectrum of $\text{An} \ I$ may be identified with \mathcal{G}_2. In particular, if \mathcal{G}_2 is infinite, then $\text{An} \ I$ provides an example of a translation-invariant *-weakly closed subspace of $L^\infty(G)$ which is complemented in $L^\infty(G)$ and has an infinite spectrum.

3. Main results. We introduce the following notation:

- $C_0(G) = \{\text{all continuous functions on } G \text{ with compact support}\}$,
- $C'_0(G) = \{\text{all continuous functions on } G \text{ vanishing at infinity}\}$,
- $C_u(G) = \{\text{all bounded uniformly continuous functions on } G\}$,
- $B(G) = \{\text{all bounded complex functions on } G\}$,
- $M(G) = \{\text{all bounded regular Borel measures on the field of Borel subsets of } G\}$.

Theorem 1. Let Φ be a translation-invariant *-weakly closed subspace of $L^\infty(G)$ which is complemented in $L^\infty(G)$. Let G be connected. Then $\Phi = L^\infty(G)$ or $\Phi \cap C_0(G) = \{0\}$.

Proof. We use argumentation based on ideas which go back to K. De Leeuw and are contained in [1], Theorem 4.1.

Suppose that Q is a continuous projection of $L^\infty(G)$ onto Φ. At the beginning we prove that there exists a continuous projection R of $L^\infty(G)$ onto Φ such that

$$T_s R = R T_s \quad (1)$$

for every $s \in G$, where $T_s h(x) = h(x + s)$, $x \in G$, h — any function on G.

Let \mathcal{M} denote a Banach mean, i.e., a linear functional on $B(G)$ satisfying the following conditions:

- (i) $|\mathcal{M} \varphi| \leq \|\varphi\|$, $\|\varphi\| = \sup_{s \in G} |\varphi(s)|$,
- (ii) $\mathcal{M} T_s \varphi = \mathcal{M} \varphi$ for every $s \in G$,
- (iii) $\mathcal{M} c = c$ for any function c constant on G.

The proof of the existence of a Banach mean may be found in [2], Theorem 1.2.1, p. 5.

Consider the function

$$\psi(f, \varphi)(s) = \langle f, T_{-s} Q T_s \varphi \rangle, \quad f \in L^1(G), \ \varphi \in L^\infty(G), \ s \in G.$$
For an arbitrarily fixed \(s \in G \) we have
\[
|\psi(f, \varphi)(s)| \leq \|f\|_1 \|T_{-s} QT_s \varphi\|_\infty \leq \|Q\| \|f\|_1 \|\varphi\|_\infty.
\]

Thus \(\psi(f, \varphi) \in B(G) \) and by (i) we have
\[\mathcal{M} \psi(f, \varphi) = \|Q\| \|f\|_1 \|\varphi\|_\infty,\]
whence the mapping \(f \to \mathcal{M} \psi(f, \varphi) \) with fixed \(\varphi \) is a linear continuous functional on \(L^1(G) \). It is represented in the form
\[\mathcal{M} \psi(f, \varphi) = \langle f, R\varphi \rangle\]
for some \(R\varphi \in L^\infty(G) \). From (3) and (2) it follows that \(R \) is a linear continuous operator and \(\|R\| \leq \|Q\| \). Let \(\Lambda_\Phi \Phi \) denote the annihilator of \(\Phi \), i.e., the set
\[\{f \in L^1(G) \colon \langle f, \varphi \rangle = 0 \text{ for every } \varphi \in \Phi\}.
\]

If \(\varphi \in L^\infty(G) \) and \(f \in \Lambda_\Phi \Phi \), then \(\psi(f, \varphi) = 0 \) and, by (3), \(R\varphi \in \Lambda_\Phi \Lambda_\Phi \Phi = \Phi \). If \(\varphi \in \Phi \), then \(T_{-s} QT_s \varphi = \varphi \), and by (iii) and (3) we obtain \(R\varphi = \varphi \).

Actually, we have proved that \(R \) is a continuous projection of \(L^\infty(G) \) onto \(\Phi \). In order to prove (1) notice that for every \(t \in G \) we have
\[
\psi(f, T_s \varphi)(t) = \langle f, T_{-t} QT_t T_s \varphi \rangle = \langle f, T_s T_{-(t+s)} QT_{t+s} \varphi \rangle \\
= \langle T_{-s} f, T_{-(t+s)} QT_{t+s} \varphi \rangle = \psi(T_{-s} f, \varphi)(t + s) \\
= T_{s} \psi(T_{-s} f, \varphi)(t).
\]

and (1) now follows from (ii), namely
\[
\langle f, RT_s \varphi \rangle = \mathcal{M} \psi(f, T_s \varphi) = \mathcal{M} T_s \psi(T_{-s} f, \varphi) = \mathcal{M} \psi(T_{-s} f, \varphi) \\
= \langle T_{-s} f, R\varphi \rangle = \langle f, T_s R\varphi \rangle.
\]

Now we show that \(C_u(G) \) is an invariant subspace of \(R \). For \(\varphi \in C_u(G) \) and an arbitrary \(\varepsilon > 0 \) there exists a symmetric neighbourhood of zero \(V_\varepsilon \) such that
\[
\|T_s \varphi - \varphi\|_\infty \leq \frac{\varepsilon}{\|R\|}, \quad s \in V_\varepsilon.
\]

Hence by (1) we obtain
\[
\|T_s R\varphi - R\varphi\|_\infty = \|R(T_s \varphi - \varphi)\|_\infty \leq \|R\| \|T_s \varphi - \varphi\|_\infty \leq \varepsilon,
\]
whence for a non-negative continuous function \(\eta_\varepsilon \) on \(G \) such that
\[\text{supp} \eta_\varepsilon \subset V_\varepsilon \quad \text{and} \quad \int_G \eta_\varepsilon \, d\mu = 1\]
we have
\[
\|R\varphi \ast \eta_\varepsilon - R\varphi\|_\infty \leq \varepsilon.
\]
Evidently, \(R\varphi \ast \eta \ast \in C_u(G) \), whence there exists a function \(\xi \in C_u(G) \) such that \(\xi(x) = R\varphi(x) \) for almost every \(x \). After modification (if necessary) on a set of the Haar measure zero we may assume that \(R\varphi \in C_u(G) \).

Next we show that \(C_0(G) \) is an invariant subspace of \(R \). The mapping \(\varphi \mapsto R\varphi(0) \) is a linear continuous functional on \(C_0(G) \). By the Riesz theorem, it is represented in the form

\[
R\varphi(0) = \int_G \varphi \, d\nu
\]

for some \(\nu \in M(G) \). Hence by (1) we obtain

\[
R\varphi(s) = (T_s R\varphi)(0) = (RT_s \varphi)(0) = \int_G \varphi(s + x) \, \nu(dx).
\]

Consequently, if \(\varphi \in C_c(G) \) and \(K \) is compact with

\[
|\nu|(G \setminus K) \leq \frac{\varepsilon}{\|\varphi\|},
\]

then for \(s \notin \text{supp} \varphi - K \) we have \(|R\varphi(s)| \leq \varepsilon \). Hence \(R\varphi \in C_0(G) \). For \(\varphi \in C_0(G) \) choose a sequence \(\varphi_n \in C_c(G) \) such that

\[
\lim_{n \to \infty} \|\varphi - \varphi_n\| = 0.
\]

Then

\[
\lim_{n \to \infty} \|R\varphi - R\varphi_n\| = 0 \quad \text{and} \quad R\varphi \in C_0(G),
\]

so \(C_0(G) \) is an invariant subspace of \(R \). Now for \(\varphi \in C_0(G) \) we can write

\[
\int_G \varphi(s) \, \nu(ds) = R\varphi(0) = R^2 \varphi(0) = \int_G R\varphi(s) \, \nu(ds) = \int_G \varphi(s + t) \, \nu(dt) \nu(ds),
\]

whence \(\nu \ast \nu = \nu \). Thus \(\hat{\nu}(\chi) = 1 \) or \(0 \) for every \(\chi \in \hat{G} \), where \(\hat{\nu} \) denotes the Fourier transform of \(\nu \). Since the mapping \(\chi \mapsto \hat{\nu}(\chi) \) is continuous and \(\hat{G} \) is connected, we have \(\hat{\nu} \equiv 1 \) or \(\hat{\nu} \equiv 0 \) and \(R = E \) or \(R = 0 \), respectively, on \(C_0(G) \). In the case \(R = E \) on \(C_0(G) \) we have \(C_0(G) \subset \Phi \), whence \(\Phi = L^\infty(G) \). In the case \(R = 0 \) on \(C_0(G) \) we have \(\Phi \cap C_0(G) = \{0\} \). Thus the proof is completed.

Let \(M_0(G) \) denote the class of all closed subsets of \(G \) which contain a support of a non-zero measure belonging to \(M(G) \) with the Fourier transform vanishing at infinity. Every closed subset \(F \) of \(G \) such that \(\mu(F) > 0 \) belongs to \(M_0(G) \). In a non-discrete \(G \) there may exist \(F \in M_0(G) \) such that \(\mu(F') = 0 \) (cf. [3]).

Theorem 2. Let \(\Phi \) be a translation-invariant \(*\)-weakly closed proper subspace of \(L^\infty(G) \) and let \(\hat{G} \) be connected. If \(\sigma(\Phi) \in M_0(\hat{G}) \), then \(\Phi \) is uncomplemented in \(L^\infty(G) \).
Proof. Suppose that Φ is complemented in $L^\infty(G)$. By Theorem 1, $\Phi \cap C_0(G) = \{0\}$. Let ν be a non-zero measure supported by $\sigma(\Phi)$ such that $\hat{\nu} \in C_0(G)$. For every $f \in \text{An} \Phi$ we have $\langle f, \hat{\nu} \rangle = \langle \hat{f}, \nu \rangle = 0$, whence $\hat{\nu} \in \text{An} \text{An} \Phi = \Phi$. Thus $\hat{\nu}$ is a non-zero element of $\Phi \cap C_0(G)$. This contradiction proves our theorem.

Theorem 3. Let I be a non-trivial ideal in $L^1(G)$ and let \mathcal{G} be connected. If $\sigma(\text{An} I) \in M_0(\mathcal{G})$, then I is uncomplemented in $L^1(G)$.

Proof. If P were a continuous projection of $L^1(G)$ onto I, then $Q = E - P'$ would be a continuous projection of $L^\infty(G)$ onto $\text{An} I$, contrary to Theorem 2.

The author should like to express his sincere thanks to Professor J. Kisyński for suggesting a problem considered in this note and the idea of using a Banach mean. The author is also grateful to Professor S. Hartman and Professor C. Ryll-Nardzewski for their kind and valuable remarks.

REFERENCES

Reçu par la Rédaction le 20. 2. 1976