
Face Recognition from Video by Matching Image Sets

Tat-Jun Chin∗ James U Konrad Schindler David Suter
Institute of Vision Systems Engineering,
Monash University, Victoria, Australia.

{tat.chin | james.u | konrad.schindler | d.suter}@eng.monash.edu.au

Abstract

As opposed to still-image based paradigms, video-based
face recognition involves identifying a person from a video
input. In video-based approaches, face detection and track-
ing are performed together with recognition, as usually the
background is included in the video and the person could
be moving or being captured unknowingly. By detecting
and raster-scanning a face sub-image to be a vector, we
can concatenate all extracted vectors to form an image set,
thus allowing the application of face recognition algorithms
based on matching image sets. It has been reported that
linear subspace-based methods for face recognition using
image sets achieve good recognition results. The challenge
that remains is to update the linear subspace representation
and perform recognition on-the-fly so that the recognition-
from-video objective is not defeated. Here, we demonstrate
how this can be achieved by using a well-studied incremen-
tal SVD updating procedure. We then present our online
face recognition-from-video framework and the recognition
results obtained.

1. Introduction

It is conjectured that many still image-based face recogni-

tion algorithms achieve uninspiring results in practice be-

cause they rely heavily on the assumption of a fixed pose

and expression by the subject as well as conducive back-

ground and illumination conditions. Given that many ex-

isting camera surveillance systems require to operate un-

obtrusively and without subject cooperation, a track-and-

recognize framework would be more suitable for the face

recognition task. With possible variations in subject appear-

ance and imaging conditions encoded in the video sequence,

it stands to reason that video-based face recognition algo-
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rithms should be more superior to their still image counter-

parts. Furthermore, temporal continuity in a video sequence

can be exploited to aid in the recognition decision.

Contemporary face recognition from video algorithms are

dominated by probabilistic approaches such as [18, 29, 28,

15, 16]. Here, we adopt a non-probabilistic direction to-

wards achieving face recognition from video. More specif-

ically, we observe that a video sequence can be treated as

a set of images, and hence we apply face recognition al-

gorithms based on using linear subspaces to represent and

distinguish image sets [13, 9, 26]. We argue for the case

of using linear subspace approaches due to their simplicity

and comparable accuracy, and commercial face recognition

products such as the Toshiba FacePassTM are testaments to

their effectiveness.

We employ currently available face detection algo-

rithms [19, 20, 24] which are able to achieve high accuracy

and detection rates to detect faces in our video input, thus

unburdening the task of tracking from our face recognition

module. In order to update our face representation and per-

form recognition online, we make use of well-known SVD

or PCA incremental updating procedures [5, 6, 17]. Un-

like previous approaches, for the purpose of matching or

distinguishing image sets using linear subspaces, we uti-

lize a subspace distance metric that does not involve explicit

computation of subspace principal angles. In this paper we

present our framework for online computing, updating and

distinguishing linear subspaces in order to achieve robust

recognition-from-video. The results obtained demonstrates

the effectiveness of our method.

2 Previous work

Traditionally, the video-based face recognition paradigm

was approached from the still image perspective i.e. find

an instance of a face in the video stream that is suitable un-

der certain quality measures (e.g. pose, illumination, size

etc.) and apply conventional still image-based recognition

algorithms. Methods such as these are not considered true
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video-based face recognition in the sense that they do not

coherently exploit both spatial and temporal information.

For a survey of methods that evolved from still image tech-

niques, see [27].

Recently, probabilistic approaches have gained popularity

in video-based face recognition. For a recent survey, see [7].

In [29], tracked face appearances are modeled as a joint

probability distribution of identity and motion using Se-

quential Importance Sampling (SIS) and the recognition de-

cision is obtained via marginalization. In [15], face appear-

ance manifolds are approximated by a finite number of in-

finite extent subspaces and temporal information is used to

robustly estimate the operating part of the manifold. Some

of these techniques are essentially operating on the “still-

to-video” scenario i.e. matching a video sequence of a

face to a still training image. Furthermore, methods such

as [18, 29, 28] formulate both tracking and recognition of

faces in the same probabilistic framework — an approach

we do not adopt here since we believe that decoupling track-

ing from recognition may improve the recognition results.

We identify our work as “video-to-video” based i.e. face

recognition is performed by matching image sets or video

sequences. A similar objective is pursued by [13, 1, 9, 26,

22]. We conjecture that a video-to-video system would be

more robust since it takes advantage of all images available

for training and recognition. We concentrate on algorithms

that match image sets using linear subspaces. In [26], the

Mutual Subspace Method (MSM) distinguishes image sets

by approximating an image set of the same individual with

a linear subspace and using the principal angles between

subspaces as a distance measure. An extension of MSM

is the Constrained Mutual Subspace Method (CMSM) [9],

which is essentially an MSM performed on the projection

of the original subspaces onto a constrained subspace re-

sulting in more robust classifications. In [13], it was shown

how boosting can be used to select the optimal set of prin-

cipal angles for classification.

Implementations for real-time face recognition from video

based on the subspace method were presented in [9, 14].

The CMSM method was implemented on a Visconti image

processing LSI chip in [14], yielding excellent speed and

recognition rates. Our work differs in that it is implemented

entirely on an optimized software platform whilst neither

compromising speed nor accuracy. Our work is probably

most similar to [9], where a framework for high-speed lin-

ear subspace-based face recognition from video was pre-

sented. The incremental subspace updating procedure is not

described clearly since it is not the main thrust of the paper,

but seems to start from the eigen-decomposition of the com-

plete correlation matrix. Our online subspace updating pro-

cedure is based on recent advances in incremental Singular

Value Decomposition (e.g. see [5]), which is theoretically

sound and computationally efficient.

3 Angles and distances between subspaces

We start by extracting the face in a video sequence (we as-

sume only one face is present) by using a high speed face

detector. The face sub-images are preprocessed and raster-

scanned to form m-dimensional column vectors, m being

the number of pixels. We concatenate all n vectors to form

a matrix A ∈ R
m×n (here, vector ordering is non-crucial).

The core concept of the linear subspace method is that if A
was constructed using face images, the columns of A can

be approximately spanned by a low-dimensional linear sub-

space A (see [23, 3, 2, 8, 11]) of dimension r, where r < n
and r � m. Face recognition is done on the premise that

different faces generate different subspaces, and distances

between the subspaces can be used to distinguish faces.

The notion of angles between two subspaces, called prin-
cipal angles, plays an integral part in quantifying the

distance between two subspaces. The principal angles

θ1,θ2, · · · ,θn ∈ [0,π/2] between two n-dimensional sub-

spaces P and Q, following the definition of [10], are defined

by

cosθi = max
μ∈P

max
ν∈Q

μ ·ν = μi ·νi , (1)

for i = 1, ...,n, subject to μ ·μ = ν ·ν = 1, μ ·μ j = 0, ν ·ν j =
0(1 ≤ j ≤ i− 1). The vectors {μi} and {ν j} are principal
vectors corresponding to the pair P and Q.

Given n-dimensional subspaces P and Q with principal an-

gles {θ1,θ2, · · · ,θn} and θ1 ≥ θ2 ≥ ·· · ≥ θn, the similarity

measure used in [26] is

SMSM (P, Q) = cos2 θn . (2)

We use a distance metric for our classification task instead

of a similarity measure. Specifically, we use the chordal
distance metric which is defined as

dc (P, Q) =

√
n

∑
i=1

sin2 θi . (3)

Both measures are essentially equivalent in the sense that

they induce the same topology.

Let matrices P and Q be orthonormal bases for subspaces P

and Q respectively. The projection matrices of P and Q are

respectively

P = PPT and Q = QQT . (4)

Unlike orthonormal bases, the projection matrices define

their corresponding subspaces uniquely. The chordal dis-

tance can be computed from the projection matrices:

dc (P, Q) =
1√
2
‖P−Q‖F , (5)
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with ‖ · ‖F representing the matrix Frobenius norm. For a

proof of the above, see, for example, [10].

4 Estimating and incrementally updating lin-
ear subspaces from image sets

Given the face image set A ∈ R
m×n, we wish to find an

orthonormal basis for an r-dimensional subspace A, with

r < n and r� m, that can span the columns of A. In prac-

tice A is almost always full rank, therefore the most we can

do is to find A that spans A closely. An orthonormal basis

of A can be obtained by performing an SVD on A and re-

taining the first r left singular vectors. The value r can be

selected heuristically, e.g. the cumulative sum of the first

r singular values of A should cover more than 99% of the

sum of all the singular values of A, or analytically such as

the methods highlighted in [12].

Given the matrix A ∈ R
m×n and its singular value decom-

position A = UΣV T , we compute the rank-r singular value
factorization of A, given by

Ar = UrΣr (V r)T , (6)

with r < n and r� m, Ur = U (: ,1 : r), Σr = Σ(1 : r ,1 : r)
and V r = V (:,1 : r) by using a Matlab notation. If r is large

enough, then Ar ∼= A and Ur is the orthonormal basis for a

subspace that can closely span the columns of A. Hence,

only the matrices Ur, Σr and V r are retained, and Ur will be

used for subspace distance computations via (5).

Incremental computation of the SVD is motivated by the

infeasibility of performing the SVD on large matrices [10].

For our purpose, we are hampered not only by the sheer size

of the input matrix (pixel number ranges from 400 to 10,000

depending on the system), we do not have a complete matrix

to begin with as new images are acquired on-the-fly. Fur-

thermore, the image set grows unboundedly as new image

columns are continually being appended to the image set.

Hence, there is a need to incrementally update our linear

subspace representation of an image set so that it is always

a good representation of all available images of a person.

To this end, we follow the approach taken by [5, 17, 6].

Given new columns C ∈ R
m×c, we would like to find the

SVD of [Ar C], where [·] signifies matrix concatenations.

We proceed by computing the following:

L = (Ur)T C , (7)

H = C−UrL , (8)

JK QR←− H . (9)

Geometrically, L is the projection of C onto the orthogonal

basis Ur, H is the component of C orthogonal to the sub-

space spanned by Ur, and H = JK is the QR-decomposition

of H with J being an orthonormal basis of H and K can be

interpreted as the projection of C onto the subspace orthog-

onal to the subspace spanned by Ur. We can then derive the

following identity:

[
Ur J

][
Σr L

0c×r K

][
V r 0n×c

0c×r Ic

]T

=
[

Ar C
]

,

(10)

with 0a×b denoting a zero matrix of size a×b and Ia signi-

fying an identity matrix of size a×a.

Let M be defined as the middle matrix of the left-hand-side

of (10). We can diagonalize M by invoking the SVD,

M = U ′Σ′
(
V ′

)T
, (11)

and substituting the resultant into (10). If we define

U ′′ =
[

Ur J
]
U ′ , (12)

Σ′′ = Σ′ , (13)

V ′′ =
[

V r 0n×c
0c×r Ic

]
V ′ , (14)

then the updated SVD is[
Ar C

]
= U ′′Σ′′

(
V ′′

)T
, (15)

Ur ←− U ′′ (: ,1 : r) , (16)

Σr ←− Σ′′ (1 : r ,1 : r) , (17)

V r ←− V ′′ (: ,1 : r) , (18)

with Ur updated to become the orthonormal basis for the r-

dimensional subspace that can closely span the current im-

age set [ Ar C ]. For potential numerical issues of the proce-

dure and their solutions, refer to [5]. In theory, it is possible

to incrementally update the subspace basis using only one

or as many new input image vectors as desired (i.e. the

size of matrix C). In practice, in order to reduce unneces-

sary updates due to lack of differences between consecutive

frames, we update the subspace basis only after a batch of

new image vectors are accumulated.

5 The face recognition from video frame-
work

Figure 2 shows the framework for our face recognition sys-

tem. The face recognition process starts by capturing a

video sequence of a person in front of a fairly uniform back-

ground using a high speed FireWire camera. We make use

of the Viola & Jones face detector implementation of [4] in

our system to detect faces in the video sequence at frame

rate. The faces present are subsequently cropped and pre-

processed. We noticed that the face detector of [4] re-

turns square sub-images with important facial features con-

sistently in the center region, thus greatly simplifying fa-

cial image registration — apart from removing 25% of the
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Figure 2. Our face recognition framework.

side columns, we use the face detector outputs as they are
without performing any complex facial feature alignment.

This preprocessing step functions as a crude background

subtraction scheme as well. Figure 1 shows examples of

the resulting sub-images and illustrates the pose and scal-

ing variability our system can handle. We then equalize the

histogram of the remaining pixels only to mitigate illumina-

tion effects, and reduce the sub-image to the pre-determined

size of 32× 24 pixels. The resulting sub-image is raster-

scanned to form a high-dimensional vector. This image vec-

tor is fed to a subspace estimation/updating module to pro-

duce a subspace representation of the face currently being

tracked. The next subsection details the algorithmic pro-

cedure of this module. Given an updated subspace, face

recognition is performed by computing the distance of it

to gallery subspaces trained previously from other subjects

using the same steps described in this section. The current

face is matched to the identity of the subspace with which it

has the smallest chordal distance if the value dips below an

empirically determined threshold.

5.1 Pseudo code for subspace estimation
and updating

Algorithm 1 shows the pseudo code for our subspace esti-

mation and updating procedure based on the theory in Sec-

tion 4. The input parameters to the algorithm are as follows:

• maxFrames: maximum length of video sequence to

process (in terms of image frames).

• r: dimension of linear subspace to use.

• n, n > r: number of initial images to accumulate to

estimate an initial subspace basis.

Figure 1. Examples of cropped face detec-
tor outputs. Rows 1 and 3 show the origi-
nal face detector outputs, while rows 2 and
4 show their cropped version. Notice that the
face detector implementation of [4] manages
to locate important features of faces in the
center of the output sub-images despite vast
changes in pose.

• incr: batch size of subsequent images to be used for

subspace updating.

For our experiments, we used maxFrames = 400, r = 25,

n = 30 and incr = 5. Our system managed to verify subject

identities within 150 frames (approximately 13 seconds),

while impostors are rejected at the end of the 400-th frame

without having achieved the target proximity with any of

the reference subspaces. The value r = 25 was determined

empirically to be the most suitable value, and the previous

work of [26] confirms this to be an optimal value for the

case of face images.
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Figure 3. Distance comparisons of test subspaces updated incrementally against two reference sub-
spaces. Images below graphs show key frames of video sequences of reference subjects (not seen
before) used to update the test subspaces (corresponding to the bold lines in the graphs).

6 Experimental results

We collected a small subspace database of 9 people from

our department with 3 sessions per subject. Our method

differs from other face recognition-from-video approaches

in that once we obtain a subspace representation for a per-

son, we discard his/her video sequence. Furthermore, the

subspaces of the subjects’ faces were learnt on-the-fly as the

images are being captured. We use a high-speed FireWire

camera in a laboratory environment. Whilst we do not con-

sider illumination effects yet at this stage, we did not ac-

tively constrain our illumination conditions. Seated subjects

were requested to vary their pose and facial expression in a

natural manner during the image acquisition. They were

encouraged to talk and interact with other people in the sur-

roundings while remaining seated. For examples of vari-

ances of face images produced, see Figures 1 and 3. Table 1

E1 E2 E3 E4 E5
D1 4.62 5.73 5.77 5.51 5.63

D2 5.89 4.69 5.83 5.45 5.89

D3 5.75 5.84 4.55 5.81 6.12

D4 5.21 5.44 5.86 4.93 5.53

D5 5.89 5.97 6.10 5.71 4.72

Table 1. Comparison of chordal distances.

shows chordal distances between subspaces of 5 of the sub-

jects within our database. Each subject has two subspaces

in the Table 1, i.e. the reference subspace Di (trained ear-

lier) and the subspace learned incrementally Ei (all from the

same time instance), i being the subject number. It can be

seen that the distances between subspaces of the same sub-

ject are relatively close compared to those of other subjects.

From Table 1, we observe that there exists a suitable thresh-

old value for classification. It is shown that our system man-

aged to achieve perfect results for these select individuals.

Evaluated on the overall database, we achieved an Equal
Error Rate (EER) of 10% and an Overall Accuracy of 91%.

Figure 3 shows how distance measures between subspaces

progress with the arrival of new face images. It can be seen

that as more information of a particular face is available,

the estimated face subspace converges to an accurate posi-

tion. This is indicated by the fact that the test subspace of

a subject “moves” closer to the reference subspace of the

same subject as more images are acquired and used to up-

date the subspace. Figure 4 shows the program interface to

our face recognition system. Presently we achieve a pro-

cessing speed of approximately 12 frames per second (this

includes on-the-fly subspace updating and distance calcula-

tion).

7 Conclusion and future work

We presented a framework for face recognition from video.

We treated a video sequence of a face as a set of images,

and performed face recognition by using linear subspace

methods to match image sets. We applied incremental SVD

computation procedures to update our subspace represen-
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Algorithm 1 Pseudo code for subspace estimation and up-

dating based on the theory outlined in Section 4.

Find initial n faces:
create empty matrix A of size pixels×n
f ace←− 0

while f ace < n do
perform face detection

if face detected then
pre-process sub-image

raster scan and append to A
f ace←− f ace+1

end if
end while
perform SVD on A
retain first r left singular vectors to form Ur

retain first r singular values to form Sr

Find subsequent faces:
for f rame = 0 to maxFrames do

create empty matrix C of size pixels× incr
f ace←− 0

while f ace < incr do
perform face detection

if face detected then
pre-process sub-image

raster scan and append to matrix C
f ace←− f ace+1

end if
end while
find L,J and K matrices using C
construct M from Sr,L, and K
perform SVD on M i.e. M = UmSm (Vm)T

compute U′′ = [Ur J]Um
update Ur by performing Ur = U′′ (:, 1 : r)
update Sr by performing Sr = Sm (1 : r, 1 : r)
find chordal distance of span{Ur} to gallery subspaces

end for

tation on-the-fly as new images are being acquired. For

face classification, we introduced the chordal distance met-

ric to quantify the distance between test and reference sub-

spaces. Based on the framework, we implemented a face-

recognition-from-video system that is capable of perform-

ing online training and classification. By incrementally up-

dating the subspace representations, we are able to perform

online training and classification whilst maintaining robust-

ness against pose variation. Our preliminary experimental

results demonstrates the effectiveness of our approach. By

evaluating the proposed system on our own database, we

achieved recognition rates which is on par with previous

methods based on the same underlying principles (for ex-

ample, see [26, 9]), suggesting that the proposed system

Figure 4. Examples of program interface to
our system.

maintained the effectiveness of linear subspace based meth-

ods while capable of obtaining high speeds.

Future work includes improving the speed of our system

and evaluating it more substantially. A more sophisticated

background subtraction algorithm can be applied to our sys-

tem so that it can function on an arbitrary background. Ex-

periments on faces under changing lighting effects should

be done in order to gauge the robustness of our method

against illumination variations. Though our system per-

formed decently, the accuracy obtained still falls short of

expected levels for real-life deployment or commercializa-

tion. Kernel-based subspace methods like [25, 21] have

been known to be able to improve tremendously the accu-

racy of face recognition by matching image sets. The chal-

lenge is to perform the computations for the kernel-based

methods in an online manner so that we can arrive at a

system that can learn and distinguish face representations

rapidly.

References

[1] O. Arandjelovic, G. Shakhnarovich, J. Fisher, R. Cipolla,

and T. Darrell. Face recognition with image sets using man-

ifold density divergence. In IEEE Conf. on Computer Vision
and Pattern Recognition, 2005.

Proceedings of the Digital Imaging Computing: Techniques and Applications (DICTA 2005) 
0-7695-2467-2/05 $20.00 © 2005 IEEE



[2] R. Basri and D. Jacobs. Lambertian reflectance and linear

subspaces. IEEE Transactions of Pattern Analysis and Ma-
chine Intelligence, 25(2):218–223, 2003.

[3] P. Belhumeur and D. Kriegman. What is the set of images of

an object under all possible illumination conditions? Inter-
national Journal of Computer Vision, 28(3):245–260, 1998.

[4] G. Bradski, A. Kaehler, and V. Pisarevsky. Learning-based

computer vision with Intel’s open source computer vision

library. Intel Technology Journal, 9(2):119–130, 2005.

[5] M. Brand. Incremental singular value decomposition of un-

certain data with missing value. In European Conference on
Computer Vision, 2002.

[6] S. Chandrasekaran, B. Manjunath, Y. Wang, J. Winkeler,

and H. Zhang. An eigenspace update algorithm for im-

age processing. Graphical Models and Image Processing,

59(5):321–332, 1997.

[7] R. Chellappa and S. Zhou. Handbook of face recogni-
tion, chapter 9: Face tracking and recognition from video.

Springer, 2005.

[8] R. Epstein, P. Hallinan, and A. Yuille. 52 eigenimages suf-

fice: An empirical investigation of low-dimensional lighting

models. In IEEE Workshop on Physics-Based Vision, 1995.

[9] K. Fukui and O. Yamaguchi. Face recognition using multi-

viewpoint patterns for robot vision. In 10th International
Symposium of Robotics Research, 2003.

[10] G. H. Golub and C. F. V. Loan. Matrix Computations. John

Hopkins University Press, 3rd edition, 1996.

[11] P. Hallinan. A low-dimensional representation of human

faces for arbitrary lighting conditions. In IEEE Conference
on Computer Vision and Pattern Recognition, 1994.

[12] S.-W. Kim and B. Oommen. On utilizing search methods to

select subspace dimensions for kernel-based nonlinear sub-

space classifiers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(1):136–141, 2005.

[13] T.-K. Kim, O. Arandjelovic, and R. Cipolla. Learning over

sets using boosted manifold principal angles (BoMPA). In

British Machine Vision Conference, 2005.

[14] T. Kozakaya and H. Nakai. Development of a face recogni-

tion system on an image processing LSI chip. In IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shop, 2004.

[15] K.-C. Lee, J. Ho, M.-H. Yang, and D. Kriegman. Video-

based face recognition using probabilistic appearance mani-

folds. In IEEE Conf. on Computer Vision and Pattern Recog-
nition, volume 1, pages 313–320, 2003.

[16] K.-C. Lee and D. Kriegman. Online learning of probabilis-

tic appearance manifolds for video-based recognition and

tracking. In IEEE Conf. on Computer Vision and Pattern
Recognition, 2005.

[17] A. Levy and M. Lindenbaum. Sequential Karhunen-Loeve

basis extraction and its application to images. Technical Re-

port CIS9809, Technion, 1998.

[18] B. Li and R. Chellappa. A generic approach to simultane-

ous tracking and verification in video. IEEE Trasactions on
Image Processing, 11:530–544, 2002.

[19] S. Li and Z. Zhang. Floatboost learning and statistical face

detection. IEEE Pattern Analysis and Machine Intelligence,

26(9):1–12, 2004.

[20] R. Lienhart and J. Maydt. An extended set of haar-like

features for rapid object detection. In IEEE International
Conference on Image Processing, volume 1, pages 900–903,

2002.

[21] H. Sakano, N. Mukawa, and T. Nakamura. Kernel mutual

subspace method and its applications for object recognition.

Electronics and Communications in Japan, 88(6), 2005.

[22] G. Shakhnarovich, J. Fisher, and T. Darrell. Face recognition

from long term obsevations. In IEEE European Conf. on
Computer Vision, 2002.

[23] J. Tenenbaum and W. Freeman. Separating style and content

with bilinear models. Neural Computation, 12:1247–1283,

2000.

[24] P. Viola and M. Jones. Rapid object detection using a

boosted cascade of simple features. In IEEE Conf. on Com-
puter Vision and Pattern Recognition, 2001.

[25] L. Wolf and A. Shashua. Kernel principal angles for clas-

sification machines with applications to image sequence in-

terpretation. In CVPR, volume 1, pages 635–640, 2003.

[26] O. Yamaguchi, K. Fukui, and K. Maeda. Face recognition

using temporal image sequence. In International Confer-
ence on Automatic Face and Gesture Recognition, pages

318–323, 1998.

[27] W. Zhao, R. Chellappa, P. Phillips, and A. Rosenfeld. Face

recognition: a literature survey. ACM Computing Surveys,

35(4):399–458, 2003.

[28] S. Zhou, R. Chellappa, and B. Moghaddam. Visual track-

ing and recognition using appearance-based modeling in

particle filters. IEEE Transactions on Image Processing,

13(11):1491–1506, 2004.

[29] S. Zhou, V. Krueger, and R. Chellappa. Probabilistic recog-

nition of human faces from video. Computer Vision and
Image Understanding, 91:214–245, 2003.

Proceedings of the Digital Imaging Computing: Techniques and Applications (DICTA 2005) 
0-7695-2467-2/05 $20.00 © 2005 IEEE



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


