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Abstract
*

 

   

  A novel method for learning and recognizing sequential 

image data is proposed, and promising applications to 

vision-based human movement analysis are demonstrated. 

To find more compact representations of high-dimensional 

silhouette data, we exploit locality preserving projections 

(LPP) to achieve low-dimensional manifold embedding. 

Further, we present two kinds of methods to analyze and 

recognize learned motion manifolds. One is correlation 

matching based on the Hausdorrf distance, and the other 

is a probabilistic method using continuous hidden Markov 

models (HMM). Encouraging results are obtained in two 

representative experiments in the areas of human activity 

recognition and gait-based human identification. 

 

 

1. Introduction 
 
  Visual analysis of human movements [2] aims to detect, 

track and recognize people, and more generally, to 

understand human behaviours. Interest in this is strongly 

driven by a wide spectrum of promising application areas 

such as smart surveillance, perceptual interface, etc.  

  Previous studies extract various features from raw video 

data for human motion analysis, e.g., optical flow [10], 

spatiotemporal gradients [11], local descriptors [12], the 

tracked trajectories [8], etc. However, tracking is complex 

due to the large variability in the shape and articulation of 

the human body. When using image measurements in 

terms of spatiotemporal gradients, optical flow or other 

intensity-based features, the recognition results depend 

greatly on the image recording conditions. In contrast, 

human silhouette extraction from videos is easier and 

more feasible for current vision techniques, especially in 

the environments with stationary cameras.  

  Human motion can be regarded as temporal variations 

of human silhouettes. Thus the method that we present 

prefers to directly analyze moving silhouettes for human 

movement analysis. Since all images collected during 

movements generally lie on a low dimensional manifold 

embedded in the high dimensional image space, it will be 

ideal to analyze human motions in a more compact low 

dimensional space. Recently, some promising frameworks 

for dimensionality reduction have been introduced, e.g., 

isometric feature mapping (Isomap) [17], local linear 

embedding (LLE) [16] and locality preserving projections 

(LPP) [18]. Accordingly, some researchers are exploring 

these newer methods for different vision applications, e.g., 

Elgammal and Lee [19] proposed an approach to inferring 

3D body pose from silhouettes using gait manifold learned 

by LLE. Wang et al. [20] learned the intrinsic object 

structure by Isomap to enhance tracking of parameterized 

contours. However, research on the manifold learning for 

more complex human movement analysis and recognition 

is still very limited.  

  Based on the above considerations, this paper proposes 

an effective framework to analyze human movements 

from silhouettes, in which we explore LPP to achieve the 

low-dimensional embedding of dynamic silhouette data. 

Two kinds of methods are then presented to recognize the 

learned manifolds, one of which is the nearest manifold 

method using the mean Hausdorrf distance metric, and the 

other is a probabilistic modelling and recognition method 

based on HMM. We demonstrate real applications of the 

proposed method to human gait and activity analysis. 

  The main purpose and contributions of this paper are 

summarized as follows. 1) Our aim is to examine the 

feasibility of using the features available directly from 

(probably imperfect) space-time silhouettes for analyzing 

human motions. 2) We propose a general framework for 

visual learning and recognition of sequential silhouette 

data. 3) We successfully exploit real application of LPP to 

discover intrinsic structure of dynamic data manifolds. 4) 

Two kinds of recognition methods are presented in the 

manifold subspace. Their good performance for human 

gait and activity recognition is examined. 5) Relatively, 

the proposed method is easy to understand and implement. 

The use of only binary silhouette cue make our method 

free from some problems arising in most previous studies, 

e.g., imperfect 2D or 3D feature tracking, expensive and 

noise-sensitive optical flow computation, etc.  
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2. Related work 
 

  In this paper, two areas of interest are human activity 

recognition and gait-based human identification which we 

now briefly survey.  

  Human activity recognition: Traditional methods of 

human activity analysis are based on tracking models in 

either 2D or 3D spaces [8,15]. In the work of Yaccob and 

Black [8], an action was represented by 40 curves derived 

from the tracking results of five body parts of a cardboard 

people model. Other work obtains intensity or gradient 

based features for motion recognition. Zelnik-Manor and 

Irani [11] used marginal histograms of spatiotemporal 

gradients at a few temporal scales to cluster and recognize 

video events. The work of Efros et al. [10] adopted a 

spatiotemporal descriptor based on blurred optical flow 

measurements to recognize actions on ballet, tennis and 

football datasets. There has also been significant interest 

in approaches that exploit local descriptors on interest 

points in images or videos. Schuldt et al. [12] constructed 

video representations in terms of local space-time features 

for action recognition. Silhouette-based methods are 

becoming popular. Bobick and Davis [13]
 

proposed 

view-based temporal templates for representation and 

recognition of aerobics actions. Blank et al. [14] 

performed action recognition by utilizing the properties of 

the solution to the Poisson equation to extract features 

from the space-time silhouettes. 

  Gait recognition: Recently, some methods have been 

suggested for the task of human identification by using 

gait [3-7], based on the observation that people can 

recognize others by simply observing their gaits. Most of 

the existing methods extract features from the silhouettes 

of the person and identify individuals based on those 

features or their temporal variations. Collins et al. [4] 

established a method based on template matching of body 

silhouettes in key frames for human identification. Lee et 

al. [6] described a moment-based representation of gait 

appearance for the purposes of person identification and 

gender classification. Phillips et al. [5] proposed a 

baseline algorithm for human identification using direct 

spatiotemporal correlation of silhouette images. 

 

3. Learning motion manifolds  
  
  It is a formidable task to learn the complete structure of 

the motion manifold in the high dimensional image space. 

Our idea is to embed the nonlinear manifold of human 

motions in a low dimensional subspace for more compact 

feature extraction and representation. 
  

3.1. Visual silhouette inputs 
   

  Our basic assumption is that an associated sequence of 

foreground silhouettes of a moving person can be obtained 

from the original video. Each silhouette image is then 

centred and normalized on the basis of keeping the aspect 

ratio property of the silhouette so that the resulting images 

contain as much foreground as possible, do not distort the 

motion shape, and are of equal dimensions for all input 

frames. We directly use the normalized silhouette images 

as visual inputs for manifold learning. Figure 1 shows two 

examples of visual silhouette inputs. 
 

        
 

        
 

Figure 1. Examples of visual inputs from the actions of walking (top) 
and jumping jack (bottom) 

 

3.2. Manifold learning using LPP 
 

  We choose LPP to find manifold subspaces based on a 

few reasons: a) LPP can explicitly model and discover the 

intrinsically nonlinear manifold structure of motions by 

the use of an adjacency graph; b) Like LLE, LPP has 

locality preserving characteristic, which makes it less 

sensitive to outliers; c) LPP is a linear embedding, thus it 

is computationally more efficient than nonlinear methods; 

and d) Many nonlinear methods (e.g., Isomap and LLE) are 

defined only on the training data points and how to evaluate 

the maps on new test data points remains unclear. However 

LPP can be easily applied to any new data points.  

  According to [18], the major procedure of manifold 

learning using LPP is described as follows.  

  Construct the data matrix. Given m different classes 

of motions and each class represents a sequence of input 

silhouettes. Each silhouette image with the resolution of 

r×c is represented by an h-dimensional (h=r×c) vector f in 

a raster-scan manner. Let fi,j be the jth input frame in the 

ith class and ni the number of such inputs in the ith class. 

The total number of training samples is n=n1+n2+
…

+nm, 

and the whole training data set can be represented by 

X=[f1,1, f1,2, 
… 

, f1,n1, f2,1, 
… 

, fm,nm]=[x1, x2, 
…

, xn].  

  Construct the adjacency graph. Let G be a graph with 

n nodes. An edge will be put between nodes i and j if xi 

and xj are close, where the ‘close’ can be defined by 

ε-neighbourhoods ( ε<−
2

ji xx , R∈ε ) or the K-nearest 

neighbours [18]. We choose the K-nearest neighbours to 

construct the adjacency graph, i.e., xi and xj will be 

connected if xi is among the K-nearest neighbours of xj or 

xj is among the K-nearest neighbours of xi. To measure the 

distance between xi and xj, we use the cosine similarity  

( )
( )ji

ji

ji ,cos
xx

xx
xx

⋅

⋅
=    (1) 
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We also use the supervised form of LPP (named SLPP) by 

integrating the class information when constructing the 

affinity graph. That is, xi and xj will be directly connected 

if they belong to the same class. 

  Choose the weights. The weight matrix W is a sparse 

symmetric n×n matrix with wij representing the weight of 

the edge joining vertices i and j, and 0 if there is no such 

edge. There are two kinds of variations for weighting, i.e., 

heat kernel (
txx

i

/
2

ji
ew j

−−
= , Rt ∈ ) and simple-minded 

0-1 weighting [18]. We choose the 0-1 weighting rule.  

  Eigenmaps: Compute the eigenvectors and eigenvalues 

for the generalized eigenvector problem [18]  

eXDXeXLX TT γ=     (2) 

where D is a diagonal matrix whose entries are column (or 

row) sums of W, i.e., Dii=∑jwji, L=D-W is the Laplacian 

matrix. Let the column vectors e0, 
…

, el-1 be the solutions 

of (2), ordered according to their eigenvalues λ0<λ1<
…

<λl-1. 

The embedding is represented by  

[ ]110 −== li
T

i ,,,, eeeExEy L    (3) 

Each data point is embedded into a point in the low 

dimensional feature space, thus a movement is mapped 

into a curve with temporal order in such subspace. 

 

4. Recognizing motion manifolds 
   

4.1. Matching-based method 
 

  The manifold curves of movements can be themselves 

used in a naive way for matching-based recognition. Since 

the computed manifold of each motion sequence depends 

on its duration and temporal shift, an ideal distance metric 

should be able to handle such changes. The Hausdorff 

distance provides an elegant solution by determining the 

resemblance of one point set to another. The manner in 

which it is computed implicitly includes temporal 

constraints between observation vectors.  

  Motion similarity measure: Assume that two motion 

sequences are respectively projected into M1 (l×T1) and 

M2 (l×T2), where l is the reduced dimensionality, and T1 

and T2 are the durations of these two motions, respectively. 

A variant of the Hausdorff metric, i.e., the mean value of 

the minimums, is used here.  

( )
( )
( )

( )
( ) 



























−=

≤≤≤≤ j

j

i

i
minmean,S

21 TjTi
2

2

1

1

11
21

M

M

M

M
MM  (4) 

Since the Hausdorff distance is oriented, the similarity 

measure is thus modified to ensure symmetry 

( ) ( )1221 MMMM ,S,Sd +=    (5) 

  Nearest-manifold classification: Motion classification 

is performed in a nearest neighbour framework  

( )iRM,TMdminargc
i

=1    (6) 

where RMi represent the ith reference motion pattern, i=1, 

2, …, m, and TM is a test sequence. 

 

4.2. State-space method  
 

  Although the Hausdorff distance can reflect temporal 

association of motions, it is not explicit in modelling such 

temporal constraints. Also, the matching-based method is 

subject to individual-frame noise in input data. State-space 

models are more ideal to explicitly represent temporal 

transition process of the movement. In particular, HMMs 

[1] have been demonstrated to a potent tool for analyzing 

time-varying data, and sophisticated algorithms for the 

HMM-based learning and recognition are available.   

  Parameter training of HMM: In the training stage, we 

specify the number of states for each class of motion 

empirically, and use the data-driven design of HMM with 

no restriction of the topology. In detail, the model 

parameters describing an HMM is represented by the 

triplet γ={πj, aij, bj}, where πj is the initial probability of 

the jth state being the first state, aij denotes the transition 

probability of the jth state occurring immediately after the 

ith one, and bj is the probability for a feature vector Ot 

conditioned on the jth state. Assume that the state set 

is { }Nst s,,sq L1∈ with the number of states Ns, and the 

state-conditional observation density is simply modelled 

as a multivariate Gaussian model, we have 

( ) sii Ni,sq ≤≤=Ρ=π 11         

( ) sitjtij Nji,,sq|sqa ≤≤==Ρ= + 11    (7) 

( ) ( ) ( )jjt uOOO ∑Ν==Ρ= ,;sq|b jtttj    

The parameters of the HMM are initialized to random 

values and the Baum-Welch algorithm is used to estimate 

the parameters iteratively using the forward-backward 

procedure [1]. Given a set of motion manifolds from the 

same class, we may extend the training to include multiple 

sequences. At each time of iteration, the contribution from 

individual sequences is summed up in the procedure of 

forward-backward parameter estimation. 

  HMM-based recognition: Once the separate HMMs 

are trained for all classes of motions, recognition of a new 

test sequence can be performed based on the likelihood 

computed for the input in terms of individual HMMs. 

Given m classes of HMMs γ1, γ2, 
…

, γm, and the associated 

manifold Y=[y1, y2, …, yT] of a test sequence, this test is 

declared to belong to the class c2 represented by the HMM 

with the maximum likelihood, i.e., 

( )i
i

|Pmaxargc γ= Y2     (8) 

 

5. Experiments 
   

5.1. Experiment I: Human activity recognition  
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  Due to the lack of a common evaluation database in the 

domain of human activity recognition, we use a recent 

database reported in [14]
*
. To the best of our knowledge, 

this database is one of few concurrent action databases 

available in the public domain, and is appreciably sized in 

terms of the number of subjects, actions and videos. It 

consists of 81 low-resolution videos (180×144, 25fps) 

from 9 people, each performing 9 natural activities, i.e., 

bending (bend), jumping-forward-on-two-legs (jump), 

jumping-in-place-on-two-legs (pjump), jumping jack 

(jack), running (run), walking (walk), galloping-sideways 

(side), waving-one-hand (wave1), and waving-two-hands 

(wave2). Together with one more recently added activity 

of skipping (skip), this dataset in total includes 10 

activities and 90 videos. The sample images are shown in 

Figure 2. Different people have different physical sizes 

and perform activities differently both in styles and speeds. 

This dataset asks different people to perform the same 

activities, thus providing more realistic data for the test of 

the method’s versatility.  
 

  

  

  

  

  
 

Figure 2. Example images of each kind of activity. From top left to 
bottom right: bend, jack, jump, pjump, run, side, skip, walk, wave1, 
and wave2, respectively  
 

  We directly adopt the masks from [14] for subsequent 

processing. Whether the other activities in this dataset are 

in essence periodic or not, people are asked to perform 

them multiple times in a repetitive manner (except for 

bending). We extract 198 sequences from the original 

videos by periodicity detection and segmentation, each of 

which includes a complete action. The numbers of each 

kind of activity sequences are respectively 9, 23, 24, 27, 

14, 22, 25, 16, 19, and 19 for bend, jack, jump, pjump, run, 

side, skip, walk, wave1, and wave2. We normalize all 

silhouette images into the same dimension (i.e., 48×32 

pixels). Each image is denoted by a 1536-dimensional 

vector, and a considerable number of such visual inputs 

are used to learn activity manifolds. Figure 3 shows 

spatiotemporal projections of activities, where the points 

                                                        
* http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html 

with same colours are from the same activity (▉Bend▉Jack

▉Jump▉Pjump▉Run▉Side▉Skip▉Walk▉Wave1▉Wave2). From 

Figure 3, we can see that the SLPP has better visual 

clustering effect for each class of activity than LPP, but 

both of them have compact clustering within the same 

activities. Note that distributions of jump, run and skip are 

relatively closer due to their high similarities. 
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Figure 3. Activity manifolds: SLPP (left) and LPP with K=20 (right) 
 

  To compute an overall unbiased estimate of the true 

recognition rates, we use the leave-one-out rule. Each time, 

we first leave one sequence out (the sequences taken from 

the same original video is removed, while other activities 

of the same subject remain), then train on all the 

remaining sequences, and finally classify this left-out 

sequence according to its differences with respect to the 

rest examples. If this left-out sequence is classified 

correctly, it must exhibit a high similarity to a sequence 

from a different person performing the same activity.  

  After obtaining activity manifolds, we use the methods 

described in Section 4 to perform activity recognition. 

Figure 4 shows pair-wise similarities (198×198) using the 

mean Hausdorff distance, in which the darker the pixel is, 

the more similar two activity sequences are. From each 

squared sub-matrix along the diagonal line (i.e., 9×9, 

23×23, …, 19×19), we can see there are lower similarity 

values within the sequences with the same activity, and 

higher values between the sequences with different 

activities. For the training of HMM parameters, multiple 

sequences including the same activity are used to estimate 

individual HMM parameters. We specify the number of 

state in the HMM design in a range of 3-5 empirically. 

  
 

Figure 4. Pairwise similarity: SLPP (left) and LPP with K=20 (right) 
 

  Figure 5 shows correct classification rates (CCR) of 

activity recognition, from which the following conclusions 

can be drawn: 1) dynamic silhouette manifolds are indeed 

informative for classifying human activities; 2) generally, 

the supervised LPP performs better than the unsupervised. 
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This is because it integrates class label information in 

training, thus increasing the discrimination ability; and 3) 

the HMM-based method performs somewhat better than 

the Hausdorrf-distance based method. This is probably 

because the statistical nature of the HMM renders overall 

robustness to representation and recognition.  

  Figure 5 gives a confusion matrix, in which the element 

of each row represents the probability that certain kind of 

activity is classified as other kinds of activities, from 

which it can be seen that most activities have perfect 

classification, and only a few skip activities are confused. 

High similarities among silhouettes in these motions with 

similar moving patterns may contribute to the confusion. 
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Figure 5. CCRs (left) and confusion matrix (right) 

   

  Two important parameters in the LPP-based manifold 

learning are the number of the nearest neighbours and the 

reduced dimension. All experiments have shown the 

choice of K in a range of 10-25 have similar recognition 

results, which suggests that K is easily selected to obtain 

stable results. From the relationship between the reduced 

dimensions and the recognition rates, we find that SLPP 

generally needs a lower dimension than LPP to obtain the 

best results; and our method generally does not need a 

high dimension to obtain good results. For consistency, 

here we report all the results with respect to l=20 and 

K=20. 

  We also compare the proposed method with a related 

method described in [9], which uses linear PCA on the 

filtered images using an IIR (infinite impulse response) 

filter for obtaining low-dimensional activity description. A 

best recognition rate of 92.8% using the nearest centroid 

manifold distance was reported on a test dataset of 8 

actions and 168 sequences. We re-implement and evaluate 

this method on our dataset, and the best recognition rate is 

85.86%, which is lower than any of our methods. This is 

probably because that, on the one hand, our method just 

uses binary silhouettes as inputs, thus being insensitive to 

the low colour contrast and texture changes of clothes, and 

on the other hand, compared with PCA, the LPP is less 

sensitive to outliers and noise, and more suitable to find 

intrinsic structures of activity manifolds. The work in [14] 

reported an almost 100% recognition rate on 549 test 

cubes derived from the same dataset (without skipping 

there, but the skipping is easily confused here). Our results 

are comparable to those of Blank et al., but our feature 

extraction seems simpler than theirs.   

 

5.2. Experiment II: Gait recognition 
 

  Most of gait recognition algorithms evaluate their 

performance on datasets with lateral view because more 

apparent gait motions can be examined and captured in 

such a viewing angle. Here we select the NLPR dataset 

with lateral view [7] for this experiment. It includes 20 

subjects, 4 sequences per subject, thus a total of 80 gait 

sequences (20×4). These sequence images are captured at 

a rate of 25 fps with the resolution 352×240. The length of 

each sequence varies with the pace of the walker, but is 

generally above 2 gait periods. Figure 6 shows example 

images. Relatively, this dataset is more challenging for 

human movement analysis because these sequences 

belong to the same walking activity. But they are 

performed by different subjects with different physical 

structures and motion manners. 
  

   
 

Figure 6. Example images in the NLPR gait dataset 
 

We directly use the silhouette data obtained in [7] for 

algorithm evaluation. Similarly, each silhouette image is 

normalized into a 48×32 resolution, and the supervised or 

unsupervised LPP methods are used to learn walking 

manifolds. Figure 7 shows 3D visualization including only 

6 subjects, in which the same colour represents the 

distributions of walking sequences from the same subject. 
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Figure 7. Walking manifolds: SLPP (left) and LPP with K=15 (right) 
 

We realize human identification using the leave-one-out 

rule. Note that ‘class’ in this experiment means human ID 

(i.e., labels 1-20). Figure 8 shows pair-wise similarities 

(80×80) using the mean Hausdorff distance, in each of 

which each squared sub-matrix along the diagonal line 

(i.e., 4×4) has relatively higher similarity, especially for 

SLPP, which suggests distinguishable abilities among 

different subjects of walking gaits. For the HMM-based 

method, the numbers of states are set to 5 for all 

sequences. Figure 9 shows CCRs of human identification. 

Note that all results reported here are with respect to l=20 

and K=15. From Figure 9, we can draw some similar 

conclusions to Experiment I. Although the visual effects 

of the sequences from different subjects in the manifold 
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subspace may not be as apparent as in Experiment I (with 

relatively bigger variations between different ‘classes’), 

the classification results are satisfactory because of the 

introduction of temporal relation during recognition. 

  

Figure 8. Pairwise similarity: SLPP (left) and LPP with K=15 (right) 
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Figure 9. CCRs (left) and algorithm comparison (right) 

 

We also compare the performance of the proposed 

method with those of a few silhouette-based methods 

described in [3-7] on the same silhouette data, as shown in 

Figure 9. We find that 1) the HMM-based method always 

performs better than all other algorithms; and 2) For SLPP, 

the Hausdorff-based method outperforms all other 

algorithms; for the unsupervised LPP, it performs worse 

than [6], but superior to [3,4,5,7]. 

  

6. Summary and future work 
 

  In this paper, our emphasis has been placed on human 

activity and gait analysis. To this end, we have proposed a 

general framework to learn and recognize sequential 

silhouette data in low-dimensional manifold space, and 

demonstrated encouraging applications of this technique.  

  Although the proposed framework performs well, much 

work still remains open, e.g., further algorithm evaluation 

on a larger database, fusion of shape and kinematics cues, 

view-invariant feature extraction, etc.  
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