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Abstract

Using integral images for fast computation of sums
of rectangular areas is very popular in computer vision.
However the method does not extend naturally to rota-
tions at arbitrary angles. We propose a novel solution
to elegantly compute integral images at generic angles.
Our method is exact in the sense that no approximations
are used to derive it and it is vulnerable only to the un-
avoidable aliasing effects of discretization. Detailed ex-
periments show that our method is more accurate than
previously proposed ideas. We also demonstrate its use-
fulness by detecting 2D barcodes embedded in images.

1. Introduction

The usage of integral images was popularized by the
seminal work of Viola and Jones [3] on rapid object
detection, where Haar-like features are computed effi-
ciently from sums of rectangular areas. The method
is also effective for 2D barcode detection [5, 4] since
the target object comprises of black and white rectan-
gles only. Unfortunately rotated integral images cannot
be easily computed, rendering the method ineffective
against non-upright target objects unless rotations are
specifically accounted for during training or design.

Algorithms for computing integral images at 45◦

and 26.5◦ (only) later emerged [2, 1], and the quest to
extend the method to generic angles continued in [1]
where a pair of integral images at 0◦ and 45◦/26.5◦

were used to approximate Haar-like feature responses
between those two angles, thus seemingly mitigating
the need to explicitly compute rotated integral images.

However accounting for 45◦ and 26.5◦ only is still
too restrictive, and there is no theoretical basis for the
approximation technique of [1], thus its efficacy cannot
be confirmed. We reveal in §4 that the accuracy of [1]
is actually very poor. We overcome these shortcomings

with a novel solution for computing integral images at
arbitrary angles, and using the results to realize sums of
rectangles at generic rotations. Our method is based on
decomposing a rotated integral image into two comple-
mentary “half” integral images; see Fig. 1.

We call our method “exact” to emphasize that we
explicitly obtain integral images at generic angles and
our sums of rectangles are not approximated like in [1].
Realistically and inevitably it is only exact insofar as
aliasing effects due to image discretization allow it. An
obvious example is the phenomenon where the straight
lines defining the edges of a rotated rectangle can only
be materialized as jagged lines on a 2D intensity grid.

Figure 1. Obtaining rotated integral im-
ages as the sum of 2 half integral images.

2. Rectangular Sums from Integral Images

Let image I(y, x) have the upright integral image
II0(y, x), where the superscript indicates the angle of
rotation which is zero in this case. Thus at a particular
coordinate (y1, x1) the integral image takes the value

II0(y1, x1) =

y1∑

y=1

x1∑

x=1

I(y, x). (1)

We can compute the sum of pixel intensities within rect-
angles in the image rapidly with just four look-ups to
II0(x, y) regardless of the size of the rectangle. For
example, the sum of intensities in the box in Fig. 2(a) is

II0(yd, xd)− II0(yc, xc)− II0(yb, xb) + II0(ya, xa).
(2)
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When a Haar-like feature like those in Fig. 2(b) is con-
volved with an image, the response at a location is ob-
tained as the sum of intensities under the white area mi-
nus the sum of intensities under the black area. Clearly
this can be implemented efficiently with Eq. (2).
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Figure 2. Computing rectangular pixel
sums efficiently with integral images.

The power of this approach is also due to having a
very efficient procedure to compute II0(y, x) quickly:

s(y, x) = s(y, x− 1) + I(y, x), (3)

II0(y, x) = s(y, x) + II0(y − 1, x), (4)

where s(y, x) is the cumulative row sum at the y-th row
and x-th column. Naturally to make rotated integral
images attractive we require a fast algorithm to obtain
IIα(y, x) for α > 0. The sum of pixels under the black
area in the leftmost image of Fig. 1 gives IIα(y, x).

3. Integral Images at Generic Angles

Our method begins with the notion of decompos-
ing a rotated integral image into two components as
in Fig. 1. The two components are then joined to pro-
duce the desired rotated integral image. Similar to [2, 1]
the required computational effort is maintained atO(n),
where n is the number of pixels in the image.

3.1 Ladder Vectors and Half Integral Images

We produce “ladder vectors” to define the inclina-
tions of lines in a discrete 2D grid. A ladder vector Lα

for angle α is obtained as shown in Table 1. The con-
tents of Lα represent column displacement values when
following the slope of a line downwards.

Ladder vectors play a crucial role in building half in-
tegral images. They provide a global (i.e. image wide)
reference for adding the appropriate integrated values of
previous rows to the current cumulative row sum. The
operation to produce half integral images for angle α is

hIIα(y, x) = s(y, x) + hIIα(y − 1, x− Lα(y)), (5)

Input: Desired angle α, dimensions of input image.
Initialize: g = tan(π/2 − α), c = g, f = 0, r = 0,
Lα = [ ] (null vector).
1. while r 6= max(rows, cols) do
2. if c < g/2
3. c = c + g
4. f = f + 1
5. else
6. c = c− 1
7. Lα ← f (append)
8. r = r + 1
9. f = 0

10. end if
11. end while
Output: Vector Lα of length max(rows, cols).

Table 1. Algorithm for ladder vector Lα.

where s(y, x) is obtained as in Eq. (3) and the prefix h

indicates half integral image. The possibility of sam-
pling from Lα(y) columns to the left is the difference
between Eqs. (4) and (5). Note that a 0 value is always
used in place of an out-of-bounds reference to hIIα.
Fig. 3 illustrates hIIα’s built using ladder vectors.

0

1

0

1

0

1

0

1

1

0

30°

(y1,x1) (y2,x2)

(a) α = 30
◦ .

0

1

2

1

2

1

2

1

1

2

55°

(y2,x2)(y1,x1)

(b) α = 55
◦.

Figure 3. The darker and lighter ar-
eas respectively indicate pixels summed
by hIIα(y1,x1) and hIIα(y2,x2). In (a)
hIIα(y2,x2) encompasses hIIα(y1,x1).
The numbers on the left are contents of
ladder vectors L30
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and L55
◦
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It is evident that the 2nd half integral image in Fig. 1
cannot be obtained using Eq. (5), thus rotated integral
images cannot be produced as trivially as suggested. We
invent an elegant solution, depicted in Fig. 4, to circum-
vent this difficulty: The pixels summed by IIα(y, x)
belong to areas Q and R. We can produce the following
equation with some algebraic manipulation:

Q + R = (P + Q + R + S) - (P + Q) + Q - S. (6)

The four components on the RHS can be readily ob-



tained with our results thus far:

P + Q + R + S = II0(rows, x), (7)

P + Q = II0(y, x), (8)

Q = hIIα(y, x), (9)

S = hII
α
(y + 1, x). (10)

Item hII
α

is the outcome of rotating the image clock-
wise by 90◦, computing hIIα and reversing the rota-
tion. In practice this is easily achieved by changing the
order of iteration from left-to-right-then-top-to-bottom
to bottom-to-top-then-left-to-right for Eqs. (3) and (5).
Finally the rotated integral image is obtained as

IIα(y, x) = II0(rows, x) − II0(y, x) +

hIIα(y, x)− hII
α
(y + 1, x).(11)

Most applications like object detection [3] and 2D bar-
code scanning [5, 4] need II0(y, x) for upright targets
anyway so obtaining it is not an extra burden. We also
emphasize that the two-pass method of [2] can be used
in conjunction with the ladder vectors but this would
require a clumsier method to extend to generic angles.
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Figure 4. (Q + R) correspond to IIα(y, x).

3.2 Rectangular Sums at Generic Angles

Care has to be taken when obtaining coordinates of
vertexes of rotated rectangular shapes. A corner (y, x)
must occur at the intersection of two orthogonal rectan-
gle edges at α and (π/2 + α) in a manner that the area
subtended by the lines is equivalent to the area summed
by IIα(y, x). This is to ensure that the “loop is closed”
when applying Eq. (2) with IIα(y, x) such that no pix-
els from undesired areas are inadvertently included.

We rely on the ladder vector to compute valid co-
ordinates for the rectangle corners. Based on Fig. 5,
given point (ya, xa) as reference a point horizontally
displaced by length Lh (e.g. point b) is obtained as

Mh = round(Lh cosα), (12)

yb = ya −

xa+Mh∑

i=xa+1

Lα(i), xb = xa + Mh. (13)
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Figure 5. Obtaining reference coordinates
of vertexes of rotated rectangles.

On the other hand, a point vertically displaced by length
Lv (e.g. point c) is computed as

Mv = round(Lv cosα), (14)

yc = ya + Mv, xc = xa +

ya+Mv∑

i=ya+1

Lα(i). (15)

Point d can then be obtained from either points c or d.
These four corners are then used to lookup IIα(y, x) to
obtain the rectangular sum via Eq. (2). Such a process is
also required for defining the Haar-wavelets in Fig. 2(b).

4. Experiments

We first examine the accuracy of computing rotated
rectangular pixel sums using the proposed method. We
use a chessboard image with well-defined horizontal
and vertical edges since the rectangular sums derived
would be very sensitive to errors in positioning, inter-
polation and approximation [1], thus giving us a clear
indication of accuracy. Ground truth values are first ob-
tained by computing sums of pixels under squares at
multiple positions and scales using the upright integral
image on the unrotated input image. The input image
is then rotated at angle α and IIα(y, x) is obtained. At
positions and scales corresponding to the upright case,
sums of pixels under rotated squares are obtained using
the proposed method and compared against the ground
truth values. Fig. 6(a) illustrates the experiment.

We follow the error function of [1] to carry out the
comparison between ground truth and rotated sums:

E = (|sumα − sum0|/max)× 100%, (16)

where max is the maximum possible pixel sum for the
particular scale. We also implemented the method of [1]
to approximate the sums of rotated squares by linearly
weighting the sums of squares at 0◦ and 45◦ computed
using II0(y, x) and II45

◦

(y, x), i.e.

sumα = sum0 ·(45◦−α)/45◦+sum45◦ ·α/45◦. (17)
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(a) The experimental setting.
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Figure 6. Experimental results.

Fig. 6(b) depicts the error of two methods for
α = [1◦, 2◦, . . . , 45◦] and averaged across scales of
[12, 18, 24, . . . , 48]. As was observed in [1], the er-
ror of the approximation technique peaks halfway in
between 0◦ and 45◦ when the underlying sum of pix-
els is the farthest from sum0 and sum45◦ . Recall that
only II0(y, x) and II45

◦

(y, x) are explicitly computed
by [1]. In distinct contrast, the error of our method
stays consistently low across the whole range of rotation
since we compute rotated integral images at specific an-
gles. In fact, the persistent error stems from discretiza-
tion effects only such as intensity interpolation of image
rotations and jagged edges of the square templates.

We demonstrate a practical application with the de-
tection of rotated 2D L-shaped barcodes embedded in
input images; see Fig. 7. This is achieved by scanning
a template at multiple scales and angles on an input im-
age. The response of placing a template on a position
is obtained by seeking the difference between the av-
erage intensity of pixels under the white area (i.e. the
barcode boundary) and the average intensity of pixels
under the black area (i.e. the L-shape). The pixels un-
der the data portion are ignored. The response will be
high if the pattern under the template is the barcode.
We compute this response using rotated integral images
since only rectangular summing is required, thus avoid-
ing the costly operation of rotating the input image.

(a) Input image. (b) Detections.

Figure 7. 2D barcode detection at generic
angles with rotated integral images. Note
that input image rotations are not needed.

5. Conclusion

We propose a method to compute integral images at
generic angles which provides an efficient means for
summing pixels under rotated rectangular shapes. Since
our method obtains the rotated integral images explic-
itly the rectangular sums obtained are more accurate
that approximated values from methods like [1]. Exper-
imental results support this argument. We also demon-
strate a practical application by detecting 2D barcodes
embedded in cluttered input images.
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