
978-1-4244-4620-9/09/$25.00 c©2009 IEEE

A Framework for Determining Overlap in Large
Scale Networks

Anton van den Hengel, Henry Detmold, Christopher Madden, Anthony Dick, Alex Cichowski, Rhys Hill
The Australian Centre for Visual Technologies

School of Computer Science
University of Adelaide

Email: {anton,henry,cmadden,ard,alexc,rhys}@cs.adelaide.edu.au

Abstract—This paper presents a novel framework designed
for calculating the topology of overlapping cameras in large
surveillance systems. Such a framework is a key enabler for
efficient network-wide surveillance, e.g. inter-camera tracking,
especially in large surveillance networks. The framework pre-
sented can be adapted to utilise numerous contradiction and
correlation approaches to identify overlapping portions of camera
views using activity within the system. It can also utilise a
various arbitrary occupancy cells which can be used to adjust
both the memory requirements and accuracy of the topology
generated. The framework is evaluated for its memory usage,
processing speed and the accuracy of its overlap topology on a 26
camera dataset using various approaches. A further examination
of memory requirements and processing speed on a larger 200
camera network is also presented. The results demonstrate that
the framework significantly reduces memory requirements and
improves execution speed whilst producing useful topologies from
a large surveillance system at real-time speeds.

I. INTRODUCTION

Video surveillance is becoming increasingly ubiquitous in
society, and is often seen by the public as a quick and easy
tool for obtaining accurate, verifiable information to evaluate
incidents. It is perceived that video footage can provide an
undeniable record of observable events, so video footage is
increasingly being used in court cases. Video surveillance
networks are therefore increasing in scale, with networks
of multiple thousands of cameras becoming common. For
example, the Washington D.C. police have access to a net-
work of 5,000 cameras [1] and Singapore’s Local Transport
Authority runs a network of nearly 6,000 cameras [2]. The
scale of these networks demands intelligent software to assist
human operators in making sense of the vast amounts of
data produced. Computer vision research has made significant
progress in automating the processing of this data on the small
scale (see [3] for a survey), but there has been less progress
in scaling these techniques to the much larger networks now
being deployed.

Recent approaches aimed at analysing data from large scale
surveillance networks have focused upon important network-
wide services to support visual processing. Activity topology
estimation [4] is an example of such a service that provides a
description of the spatial and temporal relationships between
the fields of view of a network’s cameras in the form of a
graph. Such a graph can be used to identify where one cam-
era’s field of view overlaps with that of an adjacent camera.

The camera overlap topology is an important sub-graph of
the full activity topology that only contains those links where
cameras observe common regions of the scene. Thus camera
overlap supports the same operations as a general topology;
however it is easier to obtain automatically. The estimation
this overlap topology from cell occupancy is the focus of the
framework described in this paper. This overlap topology aids
an operator in predicting the movement of an individual from
the field of view of one camera to that of an adjacent camera.
It can also allow software applications to provide efficient
handover of objects being tracked across cameras, and be
used to optimise camera position and orientation through the
selection of appropriate degrees of overlap.

In early surveillance systems the overlap topology was
either manually specified or derived from camera calibration
to common ground planes. More recent systems have been
demonstrated that can at least partly automate the process
by analysing video from the cameras. These systems often
utilise networks containing fewer than 10 cameras [3], but have
requirements that mean they do not scale well to networks an
order of magnitude larger. For example, [5] requires manually
marked correspondences between images of the fields of view
of different cameras. [6] requires a training stage where only
one object is observed in order to accurately extract the true
camera correspondences. [7], [8] and [9] all require many
correct detections of objects as they appear and disappear from
cameras over a long period of time. They also rely upon the
accurate matching of appearance-based representations across
cameras, which may have differing intrinsic properties and
colour responses, and will almost certainly be observing their
fields of view under different illumination conditions. [10]
investigates a different approach where exclusion is used to
build an overlap topology by gradually removing potential
connections based on the results of foreground segmenta-
tion [11].

The camera overlap topology is at its most effective in large
scale systems with hundreds or thousands of cameras. Such
large scale systems are very difficult to effectively map using
manual processes. In order to effectively deal with this size
of network, a framework is needed that provides scalability
and an ability to function automatically with the disturbances
that can occur during routine operation of large systems. This
requires an ability to operate in a distributed fashion and

handle other potential problems, such as cameras becoming
offline for indeterminate periods. Such a framework also needs
to develop an overlap topology that produces overlap results
without excluding any possible connections from areas of the
system that might see little activity.

The main contribution of this paper is the development of
a novel framework that can be used to support the distributed
estimation of overlap topologies for large scale surveillance
systems. In order to provide the basis of the framework,
a number of key concepts, including flexible cell systems
for occupancy correlation and time padding. These are de-
scribed in detail in Section II. Following this, the design of
the framework itself is presented in Section III, with some
key implementation details discussed in Section IV. As the
framework provides a system that can support many overlap
estimators, some of the common overlap estimators that have
been implemented within the framework are described in
Section V. The datasets used to evaluate the framework are
then described in Section VI. The framework is then evaluated
against several key criteria, including memory requirements,
execution time and accuracy of the estimated overlap results,
in Section VII.

II. BACKGROUND

The following sections detail the fundamental concepts upon
which the software framework was designed. An overview
is provided of the concept of cell occupancy and how this
concept may be employed in the context of overlap estimation,
the novel concept of cell systems is defined, and the concept
of time padding is presented.

A. Cell Occupancy

A cell can be defined as an arbitrary region of image-space
within a camera’s field of view. A cell can be in one of three
states at any given time: occupied (O), unoccupied (U), or
unknown (X). A fourth pseudo-state of being present is defined
as the cell being in either of the occupied or unoccupied states,
but not the unknown state. A cell is considered occupied when
a foreground target is currently within it, and unoccupied if
no target is within it. A cell enters the unknown state when
no data from the relevant camera is available. Thus for a
given camera all cells are always either unknown or present
simultaneously. This limited number of states does not include
other object or background feature information to limit the
processing required for comparisons.

One can build upon this concept by defining a cell system to
be a set of cells in a surveillance network. A simple cell system
could be formed, for example, by dividing the image space of
each camera into a regular grid, and taking the cell system
to be the collection of all cells of every grid in each camera.
Cell systems are an important abstraction within the developed
framework, as they enable flexibility in specifying what image-
space regions are of interest, and the detail to which overlap
is to be discerned. Choice of cell systems involves trade-offs
between accuracy, performance, and memory requirements of
the resulting system. The number of cells affects the memory

requirements of the system, and the pattern and density of
cells can affect the accuracy of information in the derived
overlap topology. A cell system need not include cells from
every camera, and thus cell systems may also aid in processing
sub-regions of the overall surveillance network on nodes in a
distributed system, such as a system using the partitioning
scheme recently described for exclusion [12].

Local cell systems are differentiated from the overall, global
cell system as they are defined within a single camera. In the
developed framework, a set of local cell systems is combined
to form the overall global cell system, with no requirement
that identical or similar local cell systems be used throughout
the overall system.

Overlap may be sought between cells of two disparate cell
systems defined on the same surveillance network, in which
case we refer to the two cell systems involved as cell system
A and cell system B. Examples of cell system choices include
camera-camera, where the entire field of view of each camera
forms a cell, with cell system A and cell system B being the
same cell system, and similarly pixel-pixel where each pixel
forms a cell. We could also consider pixel-camera overlap
analysis, with cell system A using pixel-based cells, and
cell system B using whole-camera cells. Any level of detail
between the extremes of camera-camera and pixel-pixel may
be specified by choosing appropriate cell systems.

B. Correlating Cell Occupancies

Cell occupancy correlation approaches rely on analysing
cell state samples taken at a given set of time points to
determine relationships between cells. The choice of cells
thus determines the image-space regions for which overlap
is to be determined. The basic mechanism for the correlation
approaches considered here is to count correlations between
cell states for each cell pair ci,cj across a set of time points
in the given input (with ci being drawn from cell system A
and cj from cell system B, where two different cell systems
have been selected for overlap estimation). For example, we
may count the number of times ci and cj have been occupied
together, which is denoted OOij , or the number of times ci has
been occupied when cj has been unoccupied, denoted OUij .
Indeed all possible combinations of the four states O, U, X
and P can be explored, though not all of this correlation data
needs to be stored directly as some of it can be derived from
other data to reduce redundancy.

With this correlation data, we can support a wide range of
overlap estimators. The exclusion approach [10] can be imple-
mented, for example, based primarily on the OU count, which
is essentially an exclusion count. For statistical approaches to
overlap estimation, probabilities can be estimated as in the
following example:

P (ci occupied, cj occupied) ≈ OOij

PPij
(1)

where PPij denotes the number of times ci and cj have been
simultaneously present. Other probabilities can similarly be
determined from other correlation counts. The overall overlap

estimation process can thus be divided into the two stages
of initial correlation, where the correlation data is derived
from input data, and a subsequent estimation stage where a
particular overlap estimator is applied to the correlation data
to estimate cell overlap.

C. Time Padding

Since obtaining occupancy samples for all cameras at pre-
cisely synchronised times is difficult, a mechanism known as
time padding is employed. We consider all cells for a camera
to be unknown for any period of time where the frame rate
drops below a certain threshold. For all other times t, we
consider a cell occupied if there is any frame where the cell
is occupied within a specified time padding distance from
time t. The precise variation of time padding varies with
the choice of overlap estimator used. Future work will also
investigate the alternative to time padding of interpolating
target locations between frames so that cell occupancy can
be precisely sampled at any given time for all cameras.

III. FRAMEWORK FOR OVERLAP ESTIMATION

The software framework was developed as an extensible,
general framework for implementing a variety of systems
within the context of cell occupancy correlation for large scale
surveillance networks. This focus upon occupancy removes
any reliance upon the extraction and comparison of features
that might be computationally expensive to perform. One key
area of flexibility required was supporting arbitrary cells and
cell systems as discussed in Section II-A. Another was the
data structure used for correlation. Whilst basic correlation
counting is a simple process, a fast correlator suitable for large-
scale surveillance networks requires a highly tuned data struc-
ture to correlate. The correlator implementation was designed
to support the investigation of new and more efficient data
structure designs, whilst handling various practical issues such
as frame rate variation and lack of camera synchronisation.
The framework also supports the use of a variety of overlap
estimation techniques, including those outlined in Section V.

The processing pipeline of the framework is illustrated in
Figure 1. These are explained in the following sections.

A. Occupancy Input

The occupancy input component handles the definition
and instantiation of cell systems. This involves the practical
aspects of streaming the input data upon which final cell
occupancy is calculated. Arbitrary input graphs can be defined
and constructed to specify how occupancy data is generated
for a whole cell system. A variety of transform nodes are
supported to generate occupancy data in various ways. For
example, a transform node may be used to resample pre-
computed occupancy on a grid-based cell system to a lower
grid resolution. This component also supports buffering and
time padding for performing on-line, live correlation where
data from cameras may arrive at any time.

B. Correlator

The correlator provided by the framework includes support
for applying time padding as discussed in Section II-C, and
appropriately handling cases where cameras go offline. The
data flow pipeline throughout the various components within
the correlator itself are shown in Figure 2.

The initial stage of the pipeline is grouping, where frames
at roughly coincident times are grouped into time points. For
each time point, the available occupancy data is mapped into
a pair of boolean occupancy vectors, one for cell system A
and another for cell system B. These describe whether each
cell in the cell system is occupied. These occupancy vectors
are accompanied by similar presence vectors describing which
cameras, or more precisely, which local cell systems within the
overall global cell systems, are present. For a given time point,
any cameras for which no frame was mapped are considered
not present. Occupancy and presence vectors are arranged
according to standard indexing schemes defined over the cell
systems being used. For a given camera, all cells are either
unknown or present, i.e. occupied or unoccupied, together.
Thus, the full state (X, U or O) of every cell in the system
is completely encoded. These vectors are typically populated
sparsely, and are maintained in the run-length encoded repre-
sentation described in Section IV-A for performance.

These occupancy and presence vectors are then passed
through the time time padding process. This maintains the
vectors over a range of time points sufficient to compute the
occupancy and presence vectors for “cell system A state”
and “cell system B state” in Figure 2. The configuration
of time range and time padding buffers used depends on
the precise time padding strategy selected. This process also
masks out those cameras having low frame rates. Following
this process, each time point will be left containing full,
time-padded occupancy data from those cameras which are
currently streaming useful video.

C. Overlap Estimation

In the final stage of the framework pipeline, the correlation
data for each cell pair ci,cj is processed by the selected overlap
estimator. This determines which cell pairs are overlapping.
Extensive support is provided for dealing with both correlation
data and overlap topologies, making the implementation of any
given overlap estimation technique based on occupancy data
straightforward. The list of overlapping cells resulting from
the overlap estimator forms the overlap topology.

IV. IMPLEMENTATION

This section discusses the important implementation details
of the framework, notably the correlation data storage methods
and the multi-threading components of the system.

A. Correlation Data Storage

As mentioned in Section II-B, there is significant redun-
dancy implied in storing all correlation matrices. Various
minimal subsets can be stored without losing the ability to

Correlator
Overlap

Estimator
Occupancy

Input System
Precomputed

Occupancy Data

Video
Archive

Correlation
Data

Connection
Topology

Cell System
Definition

Fig. 1. Data flow pipeline formed by components in the developed framework. Rectangles indicate data that may be saved to disk. Ellipses indicate framework
components. Dashed lines indicate component dependencies.

Occupancy
Input Frames

Time Range [A]

Time Padding [B]

Cell System
A State

Cell System
B State

Correlator
Core

Correlation
Data

Independent frames,
strictly increasing

time-order

Approximately coincident
frames grouped into

single time point

Range of time points
buffered as necessary

for time padding

Independent time points,
post-time padding

Correlation data
summed over all

time points

Frame Time [A,B]

Grouping
Buffer

Fig. 2. Data flow between correlator components and nature of data at each stage of the pipeline, when time padding is enabled for cell system B but not
cell system A. Rectangles indicate data. Ellipses indicate components. Text in square brackets denotes which cell system data relates to.

reconstruct the correlation data. Correlating upon minimal sub-
sets gives different performance characteristics. For example,
using the OU matrix would yield very poor performance, as
most cells tend to be unoccupied rather than occupied, and the
OU matrix needs to be updated in proportion to the number
of unoccupied cells. This leads to significant updating of
the data without adding information. Various minimal subsets
including OO, OX, XO, and XX were found to provide the
best performance.

Support for performing correlation directly on compressed
correlation matrix representations was also added, with com-
pression performed by run-length encoding (RLE). In RLE
mode, correlation matrix rows usually stored as arrays are
replaced with run-length encoded lists. These are rewritten
each time any entry in a row needs to be updated. Run-
length encoding is effective in compressing correlation ma-
trices due to contiguous regions resulting from large areas of
cells remaining wholly unoccupied. Unfortunately run-length
encoding was found to incur a penalty in execution time, with
Section VII discussing this trade-off.

B. Multi-threading

To take advantage of the parallel processing capabilities
and the expected scale the framework to larger surveillance
networks, support for multi-threading was required within
the framework. Profiling revealed that the vast majority of
CPU time is spent updating the correlation matrices in the
core component of the correlator. Thus, the multi-threading
enhancement has focused on parallelising the correlator core.

A basic approach to multi-threading was implemented in-
volving parallelising individual executions of the correlator
core for each time point. In this approach, a set of worker
threads is created at startup. When updating the correlation

matrix for a given time point, an array describing matrix row
updates to be performed is created. Row updates are then
divided up equally among worker threads, which are then
signalled to begin work. This simple approach ensures no
contention between threads, with each updating separate rows
of the correlation matrices, hence no locking is required. This
approach does not take advantage of distributing the workload
across multiple time points, and tends to give a performance
penalty on smaller datasets. It also has difficulty in achieving
more than a 2.5× speedup on larger datasets when executed
on a system with 8 CPU cores.

A second approach to multi-threading was implemented to
enable matrix updates for different time points to be under-
taken simultaneously by different threads. In this approach,
matrix row updates are distributed out to worker threads as
before, but each worker thread is allowed to continue working
continuously on its own queue of row updates for the duration
of execution. The main thread regularly adds work to each
worker thread’s queue, in each instance choosing the best
thread to balance the workload evenly.

The workload balancing of the second approach was suc-
cessful, but introduces the potential for two threads to be
attempting to update the same matrix row simultaneously.
Locking was hence required for each matrix row. Self-profiling
results generated by the framework showed a large degree of
contention in performing row updates, and this manifested in
the difficulty in obtaining speedups higher than 3× on the
same system with 8 CPU cores, as seen in Section VII.

V. CAMERA OVERLAP ESTIMATORS

This section describes several methods implemented within
the software framework for estimating camera overlap based
upon correlation results. These estimators are derived using

several common probabilistic representations: PX(x) repre-
sents the probability of X being in state x, PY (y) represents
the probability of Y being in state y, and PXY (x, y) represents
the probability that both X is in state x and Y is in state y at
the same time. Approximate values for such probabilities can
be obtained from correlation data as shown in Equation 1.

A. Exclusion Estimator
The exclusion approach is based on the observation that

if, at a given point in time, cell i is occupied and cell j
unoccupied, then cells i and j do not overlap (i.e. there is
evidence contradicting overlap)[10]. Efficient implementation
requires several extensions of the basic exclusion principal: i)
lowest visible extent is applied to occupancy blobs to place
cells i and j on the same solid surface, ii) accumulation of
contradictions over time improves efficiency and overcomes
errors in the occupancy signal output by foreground detection,
iii) exploitation of the bidirectional nature of overlap to
strengthen the evidentiary value of exclusions and iv) temporal
padding of the occupancy signal to overcome clock skew and
codec latency effects.

B. Mutual Information Estimator
A correlation approach based on the mutual information

of cell pairs can be supported by information theory, to
produce a more statistical analysis of the data available. The
mutual information represents the amount of information that
is obtained about a second variable when one knows the value
of the first variable. The mutual information, I(X; Y) for two
occupancy cells represented as binary random variables X and
Y is given by:

I(X; Y) =
∑

y∈Y,x∈X

pXY (x, y)log
(

pXY (x, y)
pX(x)pY (y)

)
(2)

High values of I(X; Y) indicate a high probability of overlap,
as one cell being occupied is very predictive of another cell
being occupied. Only a single parameter parameter required to
threshold from the I(X; Y) domain, although a function could
be determined to derive the probability of overlap instead.

C. Conditional Entropy Estimator
Another correlation approach that could form the statistical

analysis of the overlapping topologies is conditional entropy.
The conditional entropy quantifies the amount of entropy
remaining about a random variable when a second random
variable is already known. For the overlap case, one would
expect the conditional entropy to be minimal where cells
are overlapping. The conditional entropy, H(X|Y) for two
occupancy cells represented as binary random variables X and
Y is given by:

H(X|Y) = −
∑

y∈Y,x∈X

pXY (x, y)logpXY (y|x) (3)

Low values of H(X|Y) indicate a high probability of overlap.
Again a single parameter is required to threshold from the
H(X|Y) domain.

D. IntelliVid’s Correlation Estimator

IntelliVid have patented several correlation estimators [13].
The estimator investigated here is based on lift(X, Y) for two
occupancy cells represented as binary random variables X and
Y :

lift(X,Y) =
pXY (1, 1)

pX(1)pY (1)
(4)

Values of lift(X,Y) significantly greater than 1.0 provide
evidence in favour of overlap.

VI. DATASETS

This paper analyses the framework using two datasets that
represent both a smaller scale system and a larger scale system.
The first dataset consists of 26 surveillance cameras placed
around an office and laboratory environment as shown in
Figure 3. Each camera has some degree of overlap with at
least one other camera’s field of view. The data was obtained
at full frame rate over a period of approximately four hours.
The views of these cameras have been manually analysed to
extract the ground truth of overlap for accuracy testing.

12

1413

25

26

3

15162

4
22

231

6

19

20

21

1

5

1
17

18

8

7

249

10

Fig. 3. A floor plan showing the 26 camera dataset. The camera positions
are shown by circles, with coloured triangles designating each camera’s field
of view. White areas are open spaces, whilst light blue regions showing areas
that are impassable.

A second, larger dataset consisting of over 200 camera
streams was also captured. These cameras spanned a campus
environment, and cannot be readily viewed on a single plan
view of the area. However, Figure 4 shows an example
overlap topology for this camera network where coloured lines
link camera views that were found to be overlapping. These
links are clustered into groups, where disconnected groups
are deemed to be non-overlapping. Such sparsely connected
overlap graphs are typical of larger camera networks. Any
camera not connected with another camera was omitted in
Figure 4. The video sequences were obtained across a period
of approximately two hours, but were captured at varying
frame rates of between 5 to 10 frames per second, depending
on the performance of individual cameras. This dataset has
not been fully ground truthed, and so is only used to analyse

the speed and memory requirements for dealing with such a
large surveillance network in the framework.

Fig. 4. An example overlap topology for the 200 camera network showing
connected components.

VII. RESULTS

The main focus of this paper has been the development
of a novel framework to estimate overlap topologies. The
evaluation of this framework is performed in two parts to
separate the evaluation of the memory and execution speed
of the framework from the evaluation of the accuracy of the
resulting overlap topologies produced by the system. This
separation is made to highlight the fact that the memory
and execution speed of the generic correlation stage of the
framework is independent from the overlap estimator to be
applied to the data. It is a relatively insignificant step in terms
of execution time and memory requirements, with the accuracy
of the results of the overlap estimator are largely indicative
only of the overlap estimator used.

The correlation performance results presented in the fol-
lowing section demonstrate the effectiveness of the developed
framework for the correlation component of the overall overlap
estimation process. It is important to note that these results
were generated using pre-computed occupancy data, and do
not reflect the overheads involved in analysing video streams
to extract foreground object data from which cell occupancy
may be extracted. However, we note that foreground detection
has the potential to be performed directly within modern
IP cameras, and deriving cell occupancy from foreground
detection results is trivial.

The results of the overlap topology estimation are also pre-
sented to demonstrate the accuracy of the topologies generated
by the final, overlap estimation stage of the framework. Due
to the difficulties of obtaining large scale ground truth, these
results are based upon the 26 camera dataset.

Except where otherwise indicated, the cell systems used
in these results consisted of cells on a regular 12 × 9 grid
for each camera in the network, yielding a total of 108 cells
per camera. The analysis presented here was executed upon a
current high-end desktop-level computer system, consisting of

two 2.83GHz Intel Xeon CPUs, each with 4 cores, and a total
of 8GB of RAM. It should be noted that this process operates
an order of magnitude faster than real-time, so more limited
hardware could still operate in a real-time system.

A. Correlation Performance Results

The correlation performance results presented here analyse a
range of important factors affecting the correlation stage within
the overall overlap estimation system. We begin with the
analysis of the memory requirements of the system when using
various cell systems. This is followed by an exploration of the
use of RLE-based representations rather than simple arrays
in storing correlation data in memory during the correlation
process, as discussed in Section IV-A. A comparison with the
existing system presented by [14] examining relative perfor-
mance under different configurations. Finally, the execution
speeds of single-threaded and multithreaded instantiations of
the system are investigated.

The initial consideration of any large scale system is the
memory requirements for storing information during pro-
cessing. The memory usage resulting from configuring cell
systems A and B of correlation on a (12 × 9 grid) cell to
(12 × 9 grid) cell basis, cell to camera basis, and camera
to camera basis (see Section II-A for details) follow the
expected trends. The camera-camera requirements are very
small as expected; however the usefulness of such results is
also minimal, as they not give any indication of which areas of
which cameras overlap, merely which cameras overlap. A cell-
camera overlap topology provides additional information about
where an operator or automated process might begin to look
for objects moving across cameras, and yet only requires less
than 50MB for processing over 200 cameras. Determining full
cell-cell correlations provides the most detail, but requires over
2000MB of memory, which may be prohibitive for a system
that is not dedicated to the task. This size of the required data
structure primarily results from the storage of the OO matrix
over all cell pairs. Since each camera has a 12 × 9 grid, and
therefore 108 cells, and as there is a total of 210 cameras in
the dataset, there is thus a total of 22680 cells in the system.
With the correlation count for each cell pair being stored in
32 bits, the total size of the OO matrix is:

4× 226802 = 2057529600 bytes ≈ 2GB

Note, however, that the use of RLE helps to greatly reduce
this memory overhead. The cell to cell configuration provides
much more information about how regions within camera
views might overlap, which improves the localisation of ob-
jects in a given camera to specific regions of the views of
other cameras. The particular configuration of the framework
that will be most desirable is generally a trade-off involving the
processing power and memory available. The relative memory
usage of the above options is similar for the 26 camera dataset;
however the full memory required for cell-cell correlation is
approximately 36MB due to the smaller number of cameras.

Figure 5 demonstrates both the execution time and memory
requirements of using the exclusion system presented in [14]

0 20 40 60 80 100 120 140 160
Dataset Time (min)

0

5

10

15

20

25
Ex

ec
ut

io
n

Ti
m

e
(m

in
)

Comparison Against Exclusion Correlator, 200 Cameras

0 20 40 60 80 100 120 140 160
Dataset Time (min)

0

500

1000

1500

2000

2500

D
at

a
Si

ze
 (M

B)

Exclusion Correlator
Framework, Matching Configuration
Framework, Similar Configuration
Framework, Fastest Configuration

Fig. 5. Analysis of [14] versus the developed framework for the 200 camera
dataset.

compared with the developed framework in various configu-
rations. It demonstrates the reduced memory requirements of
the framework when using the RLE option. The “matching
configuration” result configures the framework to operate in a
fashion closely matching that of the exclusion system, which
also uses RLE, and effectively correlates only on OU and OP
matrices. It can be seen that for this equivalent configuration,
the developed framework greatly outperforms the exclusion
system. The “similar configuration” result changes the corre-
lation matrix configuration so that the full range of correlation
data can be extracted. This has a performance impact, but
the framework still outperforms the exclusion system, despite
producing fully generalised correlation results not specific to
exclusion. Finally, the “fastest configuration” result disables
RLE (a configuration unsupported by the exclusion correlator),
which can be seen to give by far the fastest performance given
that sufficient memory is available. It can be seen here that
RLE memory usage increases over time due to decreasing
compressibility of correlation data, but this tends to stabilise
at approximately a quarter of the memory size of the full
array-based method. Regions of the correlation data structures
corresponding to never-occupied cells and non-overlapping
cell pairs do not need to be stored directly with the RLE
method, and large numbers of such cells and cell pairs are
typical of large camera installations which do not have high
numbers of overlapping cameras.

The main problem with RLE is that updating correlation
matrix rows requires the temporary unpacking of RLE data so
that counts within rows can be updated, reducing the execution
speed. Figure 5 shows that the overall process still operates
at approximately half the speed of the full array-based data
structure. This may be a highly desirable option in some cases,
enabling systems with limited memory to process large, 200
camera datasets at reasonable speeds. Note that all execution

speeds presented here are well above real-time performance
levels. The results follow a similar trend for the 26 camera
dataset, at speeds an order of magnitude higher.

0 5 10 15 20 25 30 35 40
Dataset Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ex
ec

ut
io

n
Ti

m
e

(m
in

)

Multithreading Comparison, 200 Cameras

Single Threaded
1 Worker Thread
2 Worker Threads
7 Worker Threads
8 Worker Threads

Fig. 6. The execution time versus the dataset time for multithreaded analysis
on the 200 camera datasets

Figure 6 shows the effect of running the system in mul-
tithreaded mode for the 200 camera dataset with various
numbers of threads. Here, it can be seen that introducing
a single worker thread greatly aids the performance of the
system by allowing the core of the correlator to run entirely
in parallel with the remainder of the framework. There is
little opportunity for contention between the main thread and
the worker thread. Adding a second worker thread leads to a
small performance decrease due to contention between worker
threads. The best configuration is seen to be 7 worker threads
in addition to the main thread, providing optimal usage of
all 8 CPU cores. Adding an additional thread again leads to
a performance decrease due to additional contention without
the benefit of another CPU core to utilise.

B. Overlap Topology Estimation Results

The focus of this paper has been to describe the framework
developed for the estimation of camera overlap topologies. The
results presented here relate to the accuracy of the estimators,
discussed in Section V, that have been utilised within the
framework. The accuracy analysis of each estimator is based
upon the results of the estimator being compared to a manually
determined ground truth for the 26 camera dataset. This
dataset consists of 26 cameras placed for surveillance purposes
throughout an indoor environment and is described in detail
in Section VI.

In each case, results are presented as a P-R curve. Pre-
cision and recall are standard metrics for the accuracy of a
classifier [15], particularly in the information retrieval context.
Given a classifier with true positives, TP , false positives, FP ,
and false negatives, FN , precision, P , is given by:

P = TP/(TP + FN) (5)

and recall, R, is given by:

R = TP/(TP + TN) (6)

In order to obtain values to use in the equations above, a
threshold must be applied the the scalar value returned by each
estimator (see Section V) to select which links are considered
to be overlapping or non-overlapping. A P-R curve can be
generated by adjusting this threshold and plotting the P and
R values over the range of usable threshold values, which will
depend upon the particular estimator being used.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

26 Camera Test

Exclusion

Mutual Information

Lift

Conditional Entropy

Fig. 7. The accuracy of the overlap topology results

Figure 7 shows precision-recall results for the four dif-
ferent estimators presented in Section V applied to the 26
camera dataset. These results demonstrate that using some
of these estimators, a reasonable level of precision can be
obtained, even for a relatively high level of recall. The lift
and conditional entropy estimators provide very poor precision
across the range of recall values. The mutual information-
based estimator provides a considerable improvement to the
point where, whilst the results are not highly accurate, they
would provide useful overlap information to subsequent pro-
cesses. The exclusion estimator provides an additional level
of precision up to the point of 80% recall of the ground
truth information, though it is outperformed by the mutual
information estimator for very high levels of recall.

VIII. CONCLUSION

This paper has presented a novel framework that can utilise
numerous contradiction and correlation methods to estimate
an overlap topology of a surveillance system where cameras
have overlapping fields of view. The framework presented
is highly extensible, and has the flexibility to deal with
many real world implementation problems, such as camera

unreliability and cameras not being fully synchronised. The
framework enables the use of fully customisable cell systems
for determining image-space regions to be correlated, allowing
a high degree of control regarding the involved trade-offs
between memory requirements, processing speed, and overlap
topology accuracy. The results presented demonstrate that the
framework can provide a useful overlap topology through
faster-than-real-time analysis of cell occupancy data without
maximising the CPU or memory usage of a current desktop
PC system, even when analysing occupancy data from 200
individual camera streams. Such a framework will be useful
in many large scale surveillance applications, and will also be
valuable for future comparisons of the accuracy of a variety
of overlap estimation methods.

REFERENCES

[1] G. Emerling, “D.C. Police set to monitor 5,000 cameras,” 2008, wash-
ington Times.

[2] J. Griffin, “Singapore deploys march networks
vms solution,” 2009, iP Security Watch. [On-
line]. Available: http://www.ipsecuritywatch.com/web/online/IPSW-
News/Singapore-deploys-March-Networks-VMS-solution/512$14948

[3] M. Valera Espina and S. A. Velastin, “Intelligent distributed surveillance
systems: A review,” IEE Proceedings - Vision, Image and Signal
Processing, vol. 152, no. 2, pp. 192–204, April 2005.

[4] A. van den Hengel, A. Dick, and R. Hill, “Activity topology estimation
for large networks of cameras,” in AVSS ’06: Proc. IEEE International
Conference on Video and Signal Based Surveillance, 2006, pp. 44–49.

[5] O. Javed, Z. Rasheed, K. Shafique, and M. Shah, “Tracking across
multiple cameras with disjoint views,” in Proc. IEEE International
Conference on Computer Vision, 2003, pp. 952–957.

[6] A. Dick and M. J. Brooks, “A stochastic approach to tracking objects
across multiple cameras,” in Proc. Australian Joint Conference on
Artificial Intelligence (AI’04), 2004, pp. 160–170.

[7] T. J. Ellis, D. Makris, and J. Black, “Learning a multi-camera topol-
ogy,” in Joint IEEE Workshop on Visual Surveillance and Performance
Evaluation of Tracking and Surveillance (VS-PETS), 2003, pp. 165–171.

[8] C. Stauffer, “Learning to track objects through unobserved regions,” in
IEEE Computer Society Workshop on Motion and Video Computing,
2005, pp. II: 96–102.

[9] K. Tieu, G. Dalley, and W. Grimson, “Inference of non-overlapping
camera network topology by measuring statistical dependence,” in Proc.
IEEE International Conference on Computer Vision, 2005, pp. II: 1842–
1849.

[10] R. Hill, A. van den Hengel, A. R. Dick, A. Cichowski, and H. Det-
mold, “Empirical evaluation of the exclusion approach to estimating
camera overlap,” 2008, proceedings of the International Conference on
Distributed Smart Cameras.

[11] C. Stauffer and W. E. L. Grimson, “Learning patterns of activity
using real-time tracking,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, pp. 747–757, 2000.

[12] H. Detmold, A. van den Hengel, A. R. Dick, A. Cichowski, R. Hill,
E. Kocadag, Y. Yarom, K. Falkner, and D. Munro, “Estimating camera
overlap in large and growing networks,” in 2nd IEEE/ACM International
Conference on Distributed Smart Cameras, 2008.

[13] C. Buehler, “Computerized method and apparatus for determining field-
of-view relationships among multiple image sensors,” 2007, united
States Patent 7286157.

[14] H. Detmold, A. van den Hengel, A. R. Dick, A. Cichowski, R. Hill,
E. Kocadag, K. Falkner, and D. S. Munro, “Topology estimation
for thousand-camera surveillance networks,” in Proceedings of First
ACM/IEEE International Conference on Distributed Smart Cameras.
IEEE, September 2007, pp. 195–202.

[15] V. Raghavan, P. Bollmann, and G. S. Jung, “A critical investigation of
recall and precision as measures of retrieval system performance,” ACM
Trans. Inf. Syst., vol. 7, no. 3, pp. 205–229, 1989.

