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Abstract—We present an approach for real-time tracking of
a non-rigid target with a moving pan-tilt-zoom (PTZ) camera.
The tracking of the object and control of the camera is
handled by one computer in real time. The main contribution
of the paper is method for target representation, localisation
and detection, which takes into account both foreground and
background properties, and is more discriminative than the
common colour histogram based back-projection. A Bayesian
hypothesis test is used to decide whether each pixel is occupied
by the target or not. We show that this target representation
is suitable for use with a Continuously Adaptive Mean Shift
(CAMSHIFT) tracker. Experiments show that this leads to a
tracking system that is efficient and accurate enough to guide
a PTZ camera to follow a moving target in real time, despite
the presence of background clutter and partial occlusion.

Keywords-Target Representation; CAMSHIFT; Tracking;
PTZ camera;

I. INTRODUCTION

Video surveillance is becoming ubiquitous in many public
places including airports, train stations, shopping malls,
and car parks. Although surveillance cameras are typically
monitored manually, it is becoming increasingly common
for some of the more mundane tasks to be performed auto-
matically by video analysis software. In this paper, we focus
on the task of tracking a person as they move about in an
environment. This underlies many higher level surveillance
tasks including behaviour analysis [1] and intruder detection.

It is often the case that a target must be tracked across
a larger area than is visible in a single camera’s field of
view. There are two possible solutions: one is that the target
is tracked across cameras [2]–[4], and another is that the
target is followed and tracked with a moving Pan-Tilt-Zoom
(PTZ) camera [5], [6]. The later approach is sometimes
more desirable than former because, firstly, in cross camera
tracking the target may be lost in the blind regions between
cameras, and secondly, it is very difficult (nearly impossible
for real environments) to lay out the cameras in such a
way that there is always overlap between the field of views
(FOVs) of the cameras. In real world environments it is also
difficult to calibrate the cameras. Following a target with a
moving camera gives the operator (human or software) more
flexibility to adjust the camera in response to events so that

a clear view of the target of interest is obtained. Our work
here focuses on tracking a target of interest with a moving
PTZ camera.

Computer Vision algorithms which are part of a real
time video surveillance system are expected to be compu-
tationally efficient. They must be able to track the target
in real time, process the signals for camera control and
still have computational resources for other services such as
storing the video and processing user requests. Continuously
Adaptive Mean Shift (CAMSHIFT) [7] has been shown to
be accurate and reliable, but is primarily designed to track
a target based on a static colour distribution, such as skin
colour, which has been built offline and is not updated while
tracking. There has been different methods for improving
CAMSHIFT tracking method [8] [9]. In [8] Allen et al. in
order to compute the probability of a pixel to belong to the
target model, used a weighted multidimensional histogram,
where the weight for a pixel’s contribution to the histogram
was computed using a simple monotonically decreasing
kernel profile. In [9] spatial constraint of face and upper
body and hence joint colour-spatial distribution was used to
improve over traditional CAMSHIFT tracking. We augment
CAMSHIFT to moving cameras by incorporating a novel
way to obtain the target probability image. This is done by
using an improved model of the target and a model of its
background, and using Bayes theorem to compute the pixel
weights for pixels which belong to the target.

A. Tracking System Overview

Our complete moving PTZ camera tracking system can
be divided into three basic modules; (1) Initialisation, (2)
tracking, and (3) camera control modules. Figure 1 gives
the schematic block diagram of our tracking system.

The initialisation module is active when the PTZ camera
is under manual control and monitoring the environment
in which the user will identify the target to be tracked.
Whenever the camera is stationary, a background model of
the scene is built and masks of foreground moving targets are
detected by background subtraction [10]. The user identifies
a target for tracking by a mouse click on the target. The
tracking can also be automatically initialise to track an object
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Figure 1. This figure shows the different modules of our complete tracking system, the flow of information, and processing of data.

which appear in a particular region of the camera’s field
of view. Even when the initialisation is automatic still the
tracking with moving camera will run in real time.

Once a target has been identified, the tracking module
takes up the task of tracking it. First, colour histogram
models of the target and the surrounding background region
are built using the current image and the foreground mask.

These histograms are then used to calculate a value for
each pixel which defines the probability of its belonging to
the target, relative to the probability that it belongs to the
background.

This process is explained in detail in Section II. The image
formed by these values is used as input to a CAMSHIFT
filter, which iteratively finds the centre of mass of the target
and its estimated size in the current frame. This is then used
to control the camera, as described in Section IV.

When a new frame is captured, control passes back to
the tracking module, with the updated estimate of target
position and scale obtained from CAMSHIFT. The process
of tracking and camera control is then repeated for the new
image. Experimental results are shown in Section V.

II. TARGET REPRESENTATION

Once a target has been manually identified by an operator
or automatically, the first task of the tracking module is
to construct a model that represents it. In our system, a
target is represented by a histogram of the region which
is detected as foreground and a histogram of a neighbouring
region which is background. Figure 2 shows an example.
The pixels inside the solid ellipse which are classified as
foreground are used to build the foreground colour histogram
Tfg , and pixels between the solid ellipse and dotted ellipse
which are classified as background are used for building the
background colour histogram Tbg for the target. The ellipse

(a) (b)

(c) (d)

Figure 2. These images show the process of building the model of a
target. (a) a frame from the image sequence (b) background model of the
image sequence (c) foreground segmentation result (d) bounding ellipses.
The target model includes a histogram of the target pixels and histogram
of the pixels which is the region between solid and dotted ellipses.

is the best fit for the foreground pixels, and is obtained by
the method used in [11]. The background region between
the solid ellipse and dotted ellipse is of fixed width of 15
pixels. We empirically came up with the width of 15 pixels.
Alternatively, this width can be the maximum distance of
the foreground pixel from the nearest boundary, computed
by distance transform on the foreground blob [12].

We assume that for at least a short time period (> 1s)
before the beginning of the tracking process, the PTZ camera
is stationary. In practice this is not a heavy constraint, as
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the user is unlikely to select a target while the camera is
moving. Thus we can obtain a background model of the
scene Figure 2(b) and a segmentation of the moving target
as shown in Figure 2(c). Figure 2(d) shows the bounding
ellipses for foreground region and background region.

A target’s foreground model Tfg is a N -bin histogram,
which is non-parametric colour probability distribution func-
tion (pdf) of the target foreground. Similarly the target’s
background model is another N -bin histogram.

Tfg = {qfg
u }Nu=1, where

N∑
u=1

qfg
u = 1

Tbg = {qbg
u }Nu=1, where

N∑
u=1

qbg
u = 1 (1)

Let the function which associates bin index u to the colour
vector at pixel location xi, i = 1...nfg where nfg is the
total number of pixels in the target foreground, be denoted
by b(xi) ∈ {1, ..., N}. The probability of the colour feature
u = {1, ..., N} in the target foreground is then computed as

qfg
u = Cfg

nfg∑
i=1

wfg
i δ[b(xi), u]. (2)

Here, δ is the kronecker delta function which is 1 when
b(xi) = u and zero otherwise, and Cfg is the normalising
constant such that

∑N
u=1 q

fg
u = 1. The term wi is a weight

for each pixel xi, which depends on its position relative to
the foreground mask. It is computed by a distance transform
on the foreground blob as described in [12]. The effect is
to give less weight to pixels that are near the edge of the
foreground region, as they are considered to be less reliable.
Figure 3 shows a pictorial representation of the weights
of the pixels for foreground and background pixels. Figure
3(a) is the foreground mask obtained by using background
subtraction algorithm as described in [10], 3(b) is an image
of the weights for foreground pixels, 3(c) is an image of
weights for the background pixels. The intensity of the pixels
in images 3(b) and 3(c) is function of their weights. The
higher the weight, the brighter the pixels are.

The probability of the colour feature u = 1...N in the
target background is computed as

qbg
u = Cbg

nbg∑
i=1

wbg
i δ[b(xi), u]. (3)

where nbg are the total number of pixels in the background
region, and Cbg is a normalising constant.

A. Calculating the weight image
The histograms computed above are non-parametric con-

ditional densities which can be denoted as qfg
u = P (u|fg)

and qbg
u = P (u|bg). Using Bayes’ formula the conditional

distributions P (fg|u) and P (bg|u) can be computed as

P (fg|u) =
P (u|fg)P (fg)

P (u)

(a) (b) (c)
Figure 3. The images here shows the weights of the foreground and
background pixels used in building the target model. (a) is the segmentation
result (b) is a plot of the weights for the foreground pixels (c) is a plot of
the weight of the background pixels. Brighter the pixels are more is their
weight in building the foreground and background histograms.

P (bg|u) =
P (u|bg)P (bg)

P (u)
(4)

We use the ratio of P (fg|u) and P (bg|u) to compute a
weight image of the target in the next frame, where each
pixel’s value is the relative probability of its membership in
the foreground and background region:

Ωi =
P (fg|b(xi))
P (bg|b(xi))

=
P (b(xi)|fg)P (fg)
P (b(xi)|bg)P (bg)

(5)

where P (fg) = nfg

nfg+nbg
and P (bg) = nbg

nfg+nbg
= 1 −

P (fg). We next show how this image leads to improved
target detection and tracking.

III. CAMSHIFT TRACKING

In its original form, CAMSHIFT uses a colour histogram
representing target appearance to evaluate the probability
that each pixel in a region belongs to foreground. It then
iteratively shifts the region to converge on the local opti-
mium: the region whose pixels have the highest combined
probability of being foreground.

We improve on this by replacing the colour histogram
back-projection with Equation 5 when calculating the prob-
ability for each pixel to belong to the target. Figure 4
compares the weight image computed by the method pre-
sented here and the weight image computed by the colour
histogram. The weight image computed by our method is
more accurate representation of the target than the previous
approach.

The modified CAMSHIFT tracking algorithm can now be
summarised by the following steps
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(a) (b) (c)
Figure 4. The images here shows (a) the frame in which the weight image
for the target closure to the camera is computed (b) colour probability
image computed using histogram back-projection as used in [7] (c) the
weight image computed by the method proposed here. Pixel intensity is
proportional to probability of belonging to foreground. The weight image
(c) is a more accurate representation of the target in frame (a) than the
colour probability image (b).

1) Initial location of the 2D mean shift search window
is based on the bounding box of the foreground-
background segmentation blob of the target.

2) Compute the weight image of the 2D region centred at
the search window location and the surrounding area,
using Equation 5.

3) Use mean-shift to converge to the new location of the
target. Store the zeroth moment and mean location.

4) Threshold the weight image to obtain a binary fore-
ground/background mask for the target. Use this to
update the foreground and background colour his-
tograms. Note that this works whether the camera is
static or moving.

5) In the next image frame the search window is centred
at the new target location, and its size is the function of
zeroth moment. The process is again repeated starting
from step 2.

The foreground and background histograms are updated
using a learning factor βfg and βbg , respectively. The value
of βfg and βbg is empirically chosen and it depends upon
the nature of lighting in the environment and environment
itself, which determines the rate at which the model of
the foreground and background will change. Usually βbg is
greater than βfg . For a moving camera background model
will change faster than foreground model of the target.

T k
fg = (1− βfg)T k−1

fg + βfg × T localised
fg

T k
bg = (1− βbg)T k−1

bg + βbg × T localised
bg (6)

where k is the current frame and T localised
fg , T localised

bg are the
foreground and background models for the target localised
in the current frame.

IV. CAMERA CONTROL

The aim of the camera control unit is to generate and relay
control commands to the camera such that the target centre

R5 R4 R3

R2R1R6

R7 R8 R9

Figure 5. This figure illustrates the working of the camera control module.
The aim of the camera control module is to keep the target centre in the
region R1. The target centre by localisation can be found in any of the
regions ranging from R1...R9. According to the region in which the target
centre is found Pan or tilt or both commands are generated and send to the
camera depending upon the last sent command.

lies in the region “R1” of the frame as shown in Figure 5.

In every frame, the horizontal and vertical distance of the
target from the frame centre in region “R1” is calculated. If
the horizontal or vertical distances or both are greater than a
threshold then commands are generated by giving priority to
the distance which is greater. If vertical distance is greater
than horizontal then tilt command is given priority over pan
and vice-versa. If the target centre lies in “R1” region ie the
horizontal and vertical distances are within threshold then
stop command is send to the camera.

One concern in the design of a camera control procedure
is to minimise the delay of the camera in executing com-
mands. Different PTZ cameras have different amounts of
lag; the camera which we used had a delay of approximately
100 ms in executing commands. To reduce the loss of time
in transmission and execution of commands, the program
keeps a record of the command the camera is executing.
Hence, repeated commands will be avoided to reduce delays.
For example if the target centre is in region “R2” then
command for right panning is generated and checked against
the last command send to the camera. If the last command
is different from pan-right then first a stop command is
send and after a delay of 100 ms the pan-right command
is send. But if the last command is same as pan-right then
no command is send to the camera which saves 200 ms of
time. This is important from a tracking point of view as
the speed of the target which the camera can track depends
more on this factor, than on the computation required for
tracking.
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V. RESULTS

We show three sets of tracking results of the several oth-
ers, were the proposed PTZ camera tracker has been able to
successfully track the identified individual with the moving
camera. These sequences have been captured using a screen
capture software while running the tracking implementation
on the same computer. This is worth mentioning to show
the computational efficiency of the proposed algorithm. The
frame size of the frames processed by the tracking algorithm
is 352×255 and all the 25 frames in a second are processed
without 100% use of the CPU on a 3.0 G-Hz Pentium
machine.

Due to the latency of the camera in executing instructions,
in tracking results the camera centre lags behind the target
centre when it is moving quickly. However, it recovers when
the target slows down or stops. This is due to the slow
processing of the commands by the PTZ camera and not
due to the tracking algorithm.

In the results shown in Figure 6 there are instances of
illumination changes, highlights and change of target pose.
This tracking image sequence is 2980 frames long. The
tracker has been successfully able to handle changes in the
target and background. Some times the camera centre is not
exactly on the target centre and lags behind the target centre
due to the latency of the camera in executing the commands
sent to it. This problem can be avoided by using a PTZ
camera whose response to commands are faster.

Figure 7 shows tracking results for another person in the
same scenario as Figure 6. In this case there are multiple
moving targets which can potentially distract the tracker.
As seen in Figure 7 (e) (f) the representation of the target
is robust enough to continue tracking even in presence of
these distractions. The length of this tracking sequence is
2814 frames.

Figure 8 shows successful tracking results in presence of
partial occlusion. The target in a lecture theatre environment
has been tracked in spite of being partially occluded by the
chairs.

VI. SUMMARY AND IDEAS FOR FUTURE WORK

In this paper a robust target representation and detection
method has been proposed, based on distance transform of
the segmented target and application of Bayes theorem to the
probability distribution of the foreground pixels and back-
ground pixels in the neighbourhood of the target. Several
tracking videos demonstrate the efficacy of the novel target
representation in tracking a target with a moving PTZ cam-
era. The target representation and hence localisation is better
than the previously used histogram back-projection method.
The representation and detection is also robust to distractions
and partial occlusions. Some times the target representation
is vulnerable to large scale illumination changes, which can
be improved by a using colour space which is more robust
to illumination changes. The vulnerability to illumination

(a) (b)

(c) (d)

(e) (f)

Figure 6. Successful tracking of a person with moving PTZ camera.
There are instances of illumination change and background change. The
complete tracking video can be seen at http://www.youtube.com/watch?v=
QzMcM1Sn6cc (dicta re1).

change can also be ameliorated by using multiple cue in
detection of the target. It would be interesting to extend
this method to multiple target tracking, which adds the extra
problem of deciding who the camera will follow in case of
clashes. Use of particle filter instead of CAMSHIFT filter
which is more robust in tracking multiple targets can also
be explored.
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