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1.  Introduction and Motivation 

 

 Financial time series data has often been found to exhibit volatility clustering.  By this we mean 

that there is often time dependence in the second moment of the error term of models that is of the 

form of a lag structure.  One model that has been developed to capture this behaviour, and one which 

is very popular amongst practitioners, is the autoregressive conditional heteroskedasticity (ARCH) 

model, originally proposed by Engle (1982).  The general form of this specification is 
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where yt  is the dependent variable of interest, x t  is a vector containing non-stochastic explanatory 

variables, ε t  is the disturbance term, θ β α α α= ′ ′( , , , , )0 1 L q  is a vector of unknown parameters 



and q  is the order of the ARCH model (i.e. an ARCH(q) model).  This paper is concerned with the 

selection of the appropriate value for q. 

 The standard method of selecting q, that was first suggested by Bollerslev (1986), is to use a 

sequence of two-sided Lagrange multiplier (LM) tests.  This method involves testing the hypotheses 

H vs Hi i0 10 0: . :α α= ≠  for i = 1 2, ,L  in turn until the null hypothesis cannot be rejected, the final i 

value represents the estimate of q.  One improvement that has been made to this testing procedure is 

to utilise the fact that every α i  must be non-negative in order to ensure the non-negativity of σ t
2 .  The 

hypotheses therefore become H vs Hi i0 10 0: . :α α= > . Lee and King (1993) showed that the 

corresponding one-sided LM test and a one-sided locally most mean powerful (LMMP) test both 

have superior power properties when compared to the two-sided LM test.   

 The main problem associated with choosing q by sequential testing methods such as these is that 

the sequence used can impact upon the final selection.  For example, suppose that the true process is 

ARCH(4).  It is possible that a rejection will not occur at an early point in the sequence, leading to the 

selection of an ARCH(1) or ARCH(2) model, without ever testing the significance of the ARCH(4) 

parameter.  A better approach, which avoids the problems caused by sequential testing, involves the 

use of model selection criteria such as Akaike’s (1973) AIC and Schwarz’s (1978) BIC.  The use of 

these criteria involves the estimation of all models under consideration and selecting the model with the 

largest penalised maximised log-likelihood.  For a detailed discussion of the benefits of using model 

selection criteria as opposed to sequential tests, see Granger, King and White (1995). 

 Recently, Hughes and King (1994, 1998) developed a version of AIC which takes account of the 

non-negativity of parameters.  This criterion, which is called one-sided AIC (OSAIC), is an 

asymptotically unbiased estimate of the Kullback-Leibler information where one-sided information is 

present.  Like with AIC, OSAIC embodies the assumption that all candidate models are correct in the 



sense that the true process can be obtained by restricting parameters contained in the model equal to 

zero.  It involves selecting the model for which 
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is a maximum, where L y( )θ+  is the inequality constrained maximised log-likelihood, k is the number 

of parameters contained in the model, p is the number of inequality constrained parameters and 

w p s( , )  is a series of probability weights determined by the probability that s out of p inequality 

constraints will not be enforced in the model, assuming that the true process lies where all constraints 

hold.  For a detailed discussion of these weights, see Gupta (1963), Kudô (1963) or Gouriéroux, 

Holly and Monfort (1982).  The values of the weights are related to the asymptotic correlation 

between the unconstrained maximum likelihood estimates.  As the information matrix for ARCH(q) 

models is diagonal, assuming that all ARCH parameters are zero (see Demos and Sentana (1998)), 

the asymptotic correlations are zero making the weights relatively easy to calculate.  The weights and 

the corresponding penalties are given in Table 1. 

 

 

TABLE 1 

Weights and Penalties Associated with ARCH Models 

MODEL      OSAIC PENALTY  

ARCH(1) w(1,0) w(1,1)     
 0.5 0.5    0.5 

ARCH(2) w(2,0) w(2,1) w(2,2)    
 0.25 0.5 0.25   1.0 

ARCH(3) w(3,0) w(3,1) w(3,2) w(3,3)   
 0.125 0.375 0.375 0.125  1.5 

ARCH(4) w(4,0) w(4,1) w(4,2) w(4,3) w(4,4)  
 0625 0.25 0.375 0.25 0625 2.0 

 



 OSAIC embodies the notion that the risk associated with the incorrect inclusion of parameters for 

which additional non-sample information is available, is less than if such information is unavailable, i.e. 

the additional penalty for non-negative parameters is less than that for unconstrained parameters.  For 

this reason, we feel that OSAIC is a theoretically more appropriate criterion for the selection of q than 

is AIC or BIC.  In the next section, we compare the small sample performance of OSAIC, AIC and 

BIC for the problem of ARCH lag order selection by Monte Carlo simulation.  

 

2.  The Monte Carlo Experiment 

 

 The Monte Carlo experiments involve generating 2000 data sets of size 60 and 200 from the 

following process 
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The values used for the α i s are given by Table 2.  We then select between the classical linear 

regression model (i.e. all ARCH parameters are zero) and ARCH(1) to ARCH(4), where all ARCH 

models are estimated by inequality constrained maximum likelihood.  

TABLE 2 

The Parameters Used in the Monte Carlo Experiments 

Correct 
Model 

DGP 
Number 

α 1  α 2  α 3  α 4  

ARCH(1) 1 0.2 0 0 0 
ARCH(1) 2 0.5 0 0 0 
ARCH(2) 3 0.2 0.12 0 0 
ARCH(2) 4 0.5 0.4 0 0 
ARCH(3) 5 0.2 0.15 0.1 0 
ARCH(3) 6 0.5 0.2 0.15 0 

 



The benefit of using data generating processes of various types is that we can assess the 

performance of the criteria across a wide variety of model selection situations.  Due to fact that the 

same inequality constrained parameter estimates are used in the calculation of each criterion, and since 

  penalty OSAIC penalty AIC penalty BIC( ) ( ) ( )< <  

for n > 7, OSAIC is more likely to select models of larger dimension than AIC and BIC is more likely 

to select models of smaller dimension than AIC.  This means that where the smallest model in the 

choice set is the correct model, BIC will outperform the other criteria; conversely, where the largest 

model in the choice set is correct, OSAIC will perform best.  For this reason we do not consider 

cases where the CLRM or the ARCH(4) model are correct. 

 

 

 

 

3.  Results and Discussion 

 

 The results of the Monte Carlo experiments are contained in Tables 3 and 4.  We present the 

estimated probability of selecting each model, in each case the highlighted area shows the estimated 

probability of correct selection.  We also include summary statistics where we calculate the average 

probability of correct selection, the average probability of underfitting (i.e. selecting a model of lesser 

dimension than the correct model) and the average probability of overfitting (i.e. selecting a model of 

larger dimension than the true model).   

From the tables, using the probability of correct selection as a measure of performance, we can 

see that for n = 60  OSAIC outperforms both AIC and BIC in every considered case.  For n = 200 , 



AIC performs marginally better than OSAIC where the ARCH(1) model is correct, but OSAIC 

outperforms AIC for all DGPs larger than ARCH(1).  Overall, the average probability of correct 

selection for OSAIC is higher than for AIC.  Both OSAIC and AIC outperform BIC for both sample 

sizes and for every considered DGP.  

TABLE 3 

Estimated Probabilities of Selecting Various ARCH models, n = 60 

DGP No.  1   2   3   4  

 OSAIC AIC BIC OSAIC AIC BIC OSAIC AIC BIC OSAIC AIC BIC 

CLRM  0.33 0.48 0.67 0.47 0.64 0.82 0.22 0.38 0.57 0.39 0.56 0.77 

ARCH1 0.54 0.48 0.33 0.40 0.32 0.18 0.33 0.34 0.31 0.31 0.29 0.19 

ARCH2 0.06 0.02 0.00 0.06 0.02 0.00 0.34 0.25 0.12 0.20 0.12 0.04 

ARCH3 0.04 0.01 0.00 0.04 0.01 0.00 0.08 0.03 0.00 0.06 0.02 0.00 

ARCH4 0.03 0.01 0.00 0.03 0.01 0.00 0.04 0.01 0.00 0.04 0.01 0.00 

             

DGP No.  5   6   OVERALL AVES  

 OSAIC AIC BIC OSAIC AIC BIC    OSAIC AIC BIC 

CLRM  0.17 0.30 0.51 0.33 0.51 0.73  Correct Selection 

ARCH1 0.19 0.23 0.25 0.23 0.24 0.18    0.33 0.25 0.13 

ARCH2 0.23 0.21 0.14 0.20 0.15 0.06  Underfitting 

ARCH3 0.34 0.23 0.09 0.18 0.08 0.02    0.57 0.72 0.87 

ARCH4 0.07 0.03 0.00 0.05 0.01 0.00  Overfitting 

          0.10 0.03 0.00 

 
TABLE 4 

Estimated Probabilities of Selecting Various ARCH models, n = 200 

DGP No.  1   2   3   4  

 OSAIC AIC BIC OSAIC AIC BIC OSAIC AIC BIC OSAIC AIC BIC 

CLRM  0.04 0.08 0.24 0.15 0.25 0.54 0.01 0.03 0.13 0.08 0.16 0.44 

ARCH1 0.79 0.85 0.75 0.68 0.69 0.46 0.15 0.23 0.40 0.31 0.40 0.41 

ARCH2 0.10 0.05 0.01 0.09 0.04 0.01 0.68 0.68 0.46 0.48 0.39 0.14 

ARCH3 0.05 0.02 0.00 0.05 0.01 0.00 0.10 0.04 0.01 0.09 0.04 0.00 

ARCH4 0.04 0.01 0.00 0.03 0.01 0.00 0.05 0.02 0.00 0.05 0.01 0.00 

             

DGP No.  5   6     OVERALL AVES  

 OSAIC AIC BIC OSAIC AIC BIC    OSAIC AIC BIC 

CLRM  0.00 0.01 0.07 0.03 0.10 0.34    Correct Selection 

ARCH1 0.02 0.05 0.19 0.12 0.20 0.33    0.63 0.60 0.39 

ARCH2 0.13 0.21 0.31 0.34 0.37 0.25    Underfitting 



ARCH3 0.73 0.68 0.43 0.42 0.29 0.08    0.23 0.35 0.61 

ARCH4 0.11 0.05 0.01 0.09 0.03 0.00    Overfitting 

          0.14 0.06 0.01 

 

AIC, and especially BIC, both have high average probabilities of underfitting the true process 

relative to that of OSAIC.  The average probability of overfitting the true process is consequently 

higher for OSAIC relative to the other criteria.  It could be argued that, whilst ideally we want the 

probability of correct selection to be as high as possible, if errors are made we prefer to overfit than 

underfit.  The reason for this is that overfitting leads to an efficiency loss in inference whereas 

underfitting leads to omitted variable biases and invalidation of the distribution theory of inferential 

procedures.  Since OSAIC has a higher average probability of correct selection and lower average 

probability of underfitting relative to the other criteria, the small sample properties of OSAIC relative 

to AIC and BIC are superior. 
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