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1. Introduction and M otivation

Financid time series data has often been found to exhibit volaility cdugtering. By this we mean
that there is often time dependence in the second moment of the error term of models that is of the
form of alag structure. One modd that has been developed to capture this behaviour, and one which
is very popular amongst practitioners, is the autoregressive conditiona heteroskedagticity (ARCH)
model, originally proposed by Engle (1982). The generd form of this spedification is
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where y, is the dependent variable of interest, X, isa vector containing non-stochastic explanatory

vaidbles, €, isthe disturbance term, g =(b¢a,,a,,--,a,)¢ is avector of unknown parameters



and g isthe order of the ARCH modd (i.e. an ARCH(g) moddl). This paper is concerned withthe
selection of the appropriate vaue for q.

The standard method of sdlecting q, that was first suggested by Bollerdev (1986), is to use a
sequence of two-d9ded Lagrange multiplier (LM) tests.  This method involves testing the hypotheses
Hy,:a, =0vs. H:a, * 0 for i =1,2,--- inturn until the null hypothes's cannot be rgjected, the find i
vaue represents the estimate of g. One improvement that has been made to this testing procedure is

to utilise the fact that every a, must be non-negative in order to ensure the non-negdtivity of s?. The
hypotheses therefore becomeH,:a, =0vs. H:a, >0. Lee and King (1993) showed that the

corresponding one-sided LM test and a one-sded localy most mean powerful (LMMP) test both
have superior power properties when compared to the two-sided LM test.

The main problem associated with choosing q by sequentid testing methods such as these is that
the sequence used can impact upon the find sdection. For example, suppose that the true processis
ARCH(4). Itispossblethat argection will not occur at an early point in the sequence, leading to the
sdection of an ARCH(1) or ARCH(2) model, without ever testing the significance of the ARCH(4)
parameter. A better approach, which avoids the problems caused by sequentid testing, involves the
use of model selection criteria such as Akaike's (1973) AIC and Schwarz' s (1978) BIC. The use of
these criteria involves the estimation of al modds under consderation and sdecting the model with the
largest pendised maximised log-likelihood. For a detailed discussion of the benefits of usng model
selection criteria as opposed to sequentia tests, see Granger, King and White (1995).

Recently, Hughes and King (1994, 1998) developed averson of AlC which takes account of the
non-negetivity of parameters. This criterion, which is cdled one-sided AIC (OSAIC), is an
asymptoticaly unbiased edimate of the Kullback-Leibler information where one-sded information is

present. Likewith AIC, OSAIC embodies the assumption that al candidate models are correct in the



sense that the true process can be obtained by restricting parameters contained in the modd equd to

zero. It involves sdlecting the modd for which

y)- Awp.9k- p+9

s=0

OSAIC = L(q"

is a maximum, where L(g"

y) istheinequdity condrained maximised log-likelihood, Kk is the number

of parameters contained in the model, p is the number of inequaity condrained parameters and
w(p,s) is a series of probability weights determined by the probability that s out of p inequdity
condraints will not be enforced in the model, assuming that the true process lies where dl condraints
hold. For a detailed discussion of these weights, see Gupta (1963), Kudd (1963) or Gouriéroux,
Holly and Monfort (1982). The vaues of the weights are related to the asymptotic correlation
between the uncongtrained maximum likdihood estimates. As the information matrix for ARCH(Q)
modes is diagond, assuming that dl ARCH parameters are zero (see Demos and Sentana (1998)),
the asymptotic correaions are zero making the weights ratively easy to cdculate. The weights and

the corresponding pendties are given in Table 1.

TABLE 1

Weights and Penalties Associated with ARCH Models

M ODEL OSAIC PENALTY
ARCH(D) | w(1,00 w(1,2)
05 05 05

ARCH(2) | w200 w21 w22

0.25 05  0.25 1.0
ARCH(3) | w30 w(E1) w32 w33

0125 0375 0375 0.125 15
ARCH(4) | w400 w(41) w42 w43 w44

0625 025 0375 025 0625 2.0




OSAIC embodies the notion that the risk associated with the incorrect inclusion of parameters for
which additiond non-sample information is avalable, is less than if such information is unavalable, i.e.
the additiond pendty for non-negative parametersis less than that for unconstrained parameters. For
this reason, we fed that OSAIC is atheoreticaly more appropriate criterion for the selection of g than
iISAIC or BIC. In the next section, we compare the smal sample performance of OSAIC, AIC and

BIC for the problem of ARCH lag order sdection by Monte Carlo smulation.

2. The Monte Carlo Experiment

The Monte Carlo experiments involve generating 2000 data sets of sze 60 and 200 from the

following process

Y. =02+¢
e ~N(Os;)
s¢ =01+ae’, +a,e’, +a.el; +a,el,.

The values used for the a; s are given by Table 2. We then sdlect between the classcd linear
regresson modd (i.e. dl ARCH parameters are zero) and ARCH(1) to ARCH(4), where dl ARCH
models are estimated by inequality congtrained maximum likelihood.

TABLE 2

The Parameters Used in the Monte Carlo Experiments

Correct DGP a, a, a, a,

M odel Number
ARCH(1) 1 0.2 0 0 0
ARCH(2) 2 0.5 0 0 0
ARCH(2) 3 0.2 0.12 0 0
ARCH(2) 4 0.5 0.4 0 0
ARCH(3) 5 0.2 0.15 0.1 0
ARCH(3) 6 0.5 0.2 0.15 0




The benefit of usng data generating processes of various types is that we can assess the
performance of the criteria across a wide variety of modd selection Stuations. Due to fact that the
same inequdity congtrained parameter estimates are used in the caculation of each criterion, and since

penalty(OSAIC) < penalty(AIC) < penalty(BIC)
for n> 7, OSAIC ismore likely to slect models of larger dimension than AIC and BIC ismore likely
to sdlect models of smdler dimenson than AIC. This means that where the smélest modd in the
choice st is the correct modd, BIC will outperform the other criteria; conversdy, where the largest
model in the choice st is correct, OSAIC will perform best. For this reason we do not consider

cases where the CLRM or the ARCH(4) mode are correct.

3. Results and Discussion

The results of the Monte Carlo experiments are contained in Tables 3 and 4. We present the
estimated probability of sdecting each model, in each case the highlighted area shows the estimated
probability of correct selection. We aso include summary gdatistics where we calculate the average
probability of correct sdection, the average probability of underfitting (i.e. selecting a modd of lesser
dimension than the correct model) and the average probability of overfitting (i.e. selecting a modd of
larger dimension than the true modd).

From the tables, usng the probability of correct sdlection as a measure of performance, we can

see that for n =60 OSAIC outperforms both AIC and BIC in every considered case. For n =200,



AIC peforms margindly better than OSAIC where the ARCH(1) mode is correct, but OSAIC
outperforms AIC for dl DGPs larger than ARCH(1). Overdl, the average probability of correct
sdlection for OSAIC is higher than for AIC. Both OSAIC and AlIC outperform BIC for both sample
sizes and for every consdered DGP.

TABLE 3

Estimated Probabilities of Selecting Various ARCH models, n = 60

DGP No. 1 2 3 4

OSAIC AIC  BIC |OSAIC AIC BIC [OSAIC AIC BIC [OSAIC AIC  BIC
CLRM | 0.33 048 067 | 047 064 082 |[022 038 057 (039 056 0.77
ARCH1 | 054 048 033|040 032 018 | 033 034 031|031 029 0.19

ARCH2 | 0.06 0.02 000 | 006 0.02 000 | 034 025 012 | 020 0.12 0.04

ARCH3 | 0.04 0.01 0.00 | 0.04 001 0.00 | 008 003 0.00 (006 0.02 0.00
ARCH4 | 0.03 0.01 0.00 | 0.03 001 000 (004 0.01 0.00 (004 0.01 0.00

DGP No. 5 6 OVERALL AVES
OSAIC AIC BIC |OSAIC AIC BIC OSAIC AIC BIC
CLRM | 0.17 030 051 (033 051 0.73 Correct Selection
ARCH1 | 0.19 023 0.25 | 023 0.24 0.18 033 0.25 0.13
ARCH2 | 0.23 0.21 0.14 | 0.20 0.15 0.06 Underfitting
ARCH3 | 0.34 0.23 0.09 | 0.18 0.08 0.02 057 0.72 0.87
ARCH4 | 0.07 0.03 0.00 | 0.05 0.01 0.00 Overfitting

0.10 0.03 0.00

TABLE 4

Estimated Probabilities of Selecting Various ARCH models, n =200

DGP No. 1 2 3 4

OSAIC AIC BIC [OSAIC AIC BIC |[OSAIC AIC BIC [OSAIC AIC  BIC
CLRM | 0.04 008 024 | 015 025 054 (001 003 013 ]0.08 016 044
ARCH1 | 0.79 085 0.75 | 068 069 046 | 015 023 040|031 040 041
ARCH2 | 0.10 0.05 0.01 | 009 004 001 | 068 068 046|048 039 0.14
ARCH3 | 0.05 0.02 000 (005 001 0.00 | 010 004 0.01 |0.09 0.04 0.00
ARCH4 | 0.04 0.01 0.00 | 0.03 0.01 000 | 005 002 0.00]005 001 0.00

DGP No. 5 6 OVERALL AVES
OSAIC AIC BIC |OSAIC AIC BIC OSAIC AIC BIC

CLRM | 0.00 0.01 0.07 | 003 010 0.34 Correct Selection

ARCH1 | 0.02 005 0.19 | 012 0.20 0.33 063 0.60 0.39

ARCH2 | 013 021 031 (034 037 0.25 Underfitting



ARCH3 | 0.73 068 043 | 042 029 0.08 023 035 061
ARCH4 | 0.11 0.05 0.01 [ 0.09 0.03 0.00 Overfitting
0.14 0.06 0.01

AIC, and especidly BIC, both have high average probabilities of underfitting the true process
relative to that of OSAIC. The average probability of overfitting the true process is consequently
higher for OSAIC relative to the other criteria. It could be argued that, whilst idedly we want the
probability of correct selection to be as high as possble, if errors are made we prefer to overfit than
underfit. The reason for this is that overfitting leads to an efficiency loss in inference whereas
undexfitting leads to omitted variable biases and invdidation of the didtribution theory of inferentid
procedures. Since OSAIC has a higher average probability of correct selection and lower average
probability of underfitting relative to the other criteria, the smal sample properties of OSAIC rdaive

to AIC and BIC are superior.
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