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Abstract

This paper illustrates how stochastic dominance criteria can be used to rank social
networks in terms of efficiency, and develops statistical inference procedures for as-
sessing these criteria. The tests proposed can be viewed as extensions of a Pearson
goodness-of-fit test and a studentized maximum modulus test often used to partially
rank income distributions and inequality measures. We establish uniform convergence
of the empirical size of the tests to the nominal level, and show their consistency under
the usual conditions that guarantee the validity of the approximation of a multinomial
distribution to a Gaussian distribution. Furthermore, we propose a bootstrap method
that enhances the finite-sample properties of the tests. The performance of the tests is
illustrated via Monte Carlo experiments and an empirical application to risk sharing

networks in rural India.
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1 Introduction

This paper considers the problem of assessing stochastic dominance criteria in network the-
ory. Many economic and social interactions involve network relationships, and the role that
networks play in determining economic outcomes— such as trade and exchange of goods in
non-centralized markets (e.g., Tesfatsion (1997)), provision of mutual insurance in developing
countries (e.g., Fafchamps and Lund (2003)), and job search (e.g., Calvo-Armengol (2004))-
is now recognized. Recent statistical and econometric studies in network theory have often
focused on the estimation of network relationships,! and the identification of peer effects.?
Statistical methods for understanding how individual incentives to form networks align with
social efficiency are yet to be developed.

This paper illustrates how stochastic dominance criteria can be used to rank networks
in terms of social efficiency, and proposes a nonparametric procedure for assessing these
criteria. Often, standard measures— such as the Gini-coefficient or Lorenz curves— are used
to rank income and poverty distributions in terms of social efficiency. However, in addition
to being relative measures,® two income or poverty distributions such that one second-order
statistically dominates the other may result in a same value of these measures. For theses
reasons, stochastic dominance criteria are usually preferred to provide a partial ordering
of inequality and poverty measures (e.g., Atkinson (1987) and Anderson (1996)), and the
concept, as well as its connection to social welfare theory, now extends to network theory
(e.g., Goyal (2012) and Jackson et al. (2008)). To illustrate how the stochastic dominance
criteria could provide a partial ordering of networks, let N = {1,2,...,n} be a finite set of n
agents and G(NN) be the set of networks on N. Let W(d,) denote the aggregate social welfare
function of network g € G(N), where d; = (dg.1, . .., dg.) and dg.; is the degree of agent i € N
in g. Following Goyal (2012, Section 7.4), network g € G(NN) is said to be socially efficient

1See Chandrasekhar (2016), Leung (2015), Banerjee et al. (2013), Liu (2013), Bickel et al. (2011), and

Bickel and Chen (2009) among others.
2See Hsieh and Lee (2016), Blume et al. (2015), Bursztyn et al. (2014), Goldsmith-Pinkham and Imbens

(2013), Jackson (2014), Graham (2014), and Aliprantis and Richter (2013) among others.
3For example, changing income inequality, measured by Gini-coefficients, can be due to structural changes

in a society such as aging populations, emigration,immigration, etc.



if W(d,) = W(dy) for all ¢ € G(N). Therefore, if W(d,) is a nondecreasing and strictly
concave function of d,.; for all ¢ € N, then second-order stochastic dominance between the
degree distributions of two networks g and ¢’ in G(N) is equivalent to dominance between
W(d,) and W(d,) in the same direction (e.g., Rothschild and Stiglitz (1970)). Therefore, the
stochastic dominance criteria provide a partial ordering of the elements of G(NNV) in terms of
social efficiency in this setting, and developing statistical methods to establish this ordering
from the observed network relationships can be of great interest in social science.

Tests similar to that of Pearson (1900) are often used for assessing stochastic dominance
hypotheses in the literature on inequality and poverty measures,* but to the best of our
knowledge, this study is the first to focus on extending these procedures to network theory.
Anderson (1996) suggests a combination of Pearson-type and studentized maximum modulus
(SMM) tests® in a single decision rule for assessing stochastic dominance of income distribu-
tions. His methodology is nonetheless not directly applicable in the context of networks for
the following reasons. First, both tests are derived in his framework under the assumption
that the samples are independent. Although this may be reasonable in the literature on
income distributions and poverty measures, it is less likely to be the case in network theory,
as it excludes interesting situations where networks’ populations overlap. For example, when
comparing risk sharing networks formed by men and women within a village (or commu-
nity), it is reasonable to assume that the two networks are independent across households,
while the correlation between the two networks is likely high within households. Second,
partitioning of samples into classes is usually required to implement a Pearson-type test,
and it is well documented that such a partitioning has an influence on the properties (size
and power) of the resulting test.% In the case where the samples are drawn from a continuous
distribution, Mann and Wald (1942) and Williams (1950) propose rules of thumb to select
the number of classes and the lengths of subsequent intervals such that the resulting test is

unbiased. These optimal rules are usually obtained by equalizing cell probabilities under the

4For example, see McFadden (1989), Anderson (1996), Davidson and Duclos (2000), Barrett and Donald

(2003), Linton et al. (2005), and Barrett et al. (2014).
®See Stoline and Ury (1979) for the tabulation of the critical values of the SMM statistics.
6See Hotelling (1930), Mann and Wald (1942), Gumbel (1943), Williams (1950), Cochran (1952), and

Schorr (1974) among others.



null whilst maintaining an expected cell frequency of at least 5 (e.g., Anderson (1996)). The
main difficulty in extending Mann and Wald (1942) and Williams (1950) rules of thumb to
the context of networks resides in the finite and discrete nature of the range of a network’s
degree distribution.

Our contribution in this paper is threefold. First, we propose an adjustment to Mann and
Wald (1942) and Williams (1950) rules of thumb that applies to the context of networks.
We show how the optimal choice of the number of classes can be approximated through
a careful analysis of the empirical histogram of the degree distributions of the networks.
Second, we propose a generalization of the Pearson- and SMM-type statistics in Anderson
(1996) that are valid even when the samples are correlated, thus applicable to the context of
network theory. Our statistics differ from that of Anderson (1996) and prior literature not
only through the correction to account for the correlation between the degree distributions of
the networks, but also their direct dependence on partitioning into classes. We show that a
combination of the two modified statistics into a single decision rule is necessary to inform us
on whether stochastic dominance holds or not, once equality between the degree distributions
of the networks is rejected. As the modified statistics depend on partitioning into classes,
controlling the size of the resulting tests uniformly over the set of all admissible partitions”
is important for the asymptotic results to give a good approximation of the empirical size to
the nominal level. Finally, we provide a bootstrap procedure that improves the finite-sample
performance of both the modified Pearson- and SMM-statistics.

We provide an analysis of both the size and power properties of the tests under weaker
assumptions than is usually the case in most applications of Pearson’s (1900) goodness-of-fit
test. On level control, we establish uniform convergence of their empirical size to the nominal
level over the set of all admissible partitions when the usual asymptotic chi-square and SMM
critical values are applied. On power, we show that test consistency holds no matter which
admissible partition is used. Moreover, we establish uniform consistency of the bootstrap
for the two modified Pearson- and SMM-tests irrespective of whether the null hypothesis
holds or not. We present a Monte Carlo experiment that confirms our theoretical findings.

In particular, while the standard tests sometimes tend to over-reject the null hypothesis

"An admissible partition is a partition in which the minimum expected number in each cell is at least 5.



if the sample size is small, the bootstrap tests have an overall good performance in such
contexts. Finally, using the data set of Jackson et al. (2012) and Banerjee et al. (2012, 2013),
we illustrate our theory through an investigation of the households’ risk sharing networks
across 75 villages in rural India. In particular, we focus on both the goods lending and
money lending networks, and test gender differences within these networks by applying the
tests of stochastic dominance developed. For goods lending, both the standard and bootstrap
tests show that the female network first- and second-order stochastically dominates the male
network at the 1% and 5% nominal levels. However, for money lending, we could only find
evidence of the first- and second-order dominance of the female network at the 5% nominal
level. At the 1% nominal level, neither network dominates the other with both the standard
and bootstrap tests. These results suggest that women within these villages overall tend to

form denser risk sharing networks than do men, especially for goods lending.

Throughout this paper, for any vector z = (x1,...,7;) € R* the notation “z < 0”
means x; < 0 for all [ = 1,... k, while “z € 0”(or “x 3 0”) means that there exists [ and
I"in {1,...,k} such that ; = 0 and 2y < 0 or 2; > 0 and x < 0. Convergence almost

. . P . .qe . d
surely is symbolized by “a.s.”, “=” stands for convergence in probability, while “—” means

convergence in distribution. The usual stochastic orders of magnitude are denoted by O,(.),
0p(.). P[] denotes the relevant probability measure and E[-] is the expectation operator
under P[-]. P*[] is the bootstrap analogue of P[-], and similarly for E*[-]. I, stands for the
identity matrix of order ¢, and for any g x ¢ matrix A, A~ is the generalized inverse of A.
The notation diag(A) is a ¢ x ¢ diagonal matrix with diagonal elements the (I,1)" elements
of A. |U|| denotes the usual Euclidian or Frobenius norm for a matrix U. For any set €,
0% is the boundary of ¢ and (0%)¢ its e-neighborhood. Finally, sup|f(w)| is the supremum
norm on the space of bounded continuous real functions, with to;f)slzogical space €.

The remainder of the paper is organised as follows. Section 2 defines the relevant concepts
and introduces the dominance criterion. Section 3 formulates the hypotheses tested and
presents the basic notations and assumptions used. Section 4 presents the derivation of the
statistics and the asymptotic theory developed. Section 5 illustrates the performance of

the tests via Monte Carlo experiments. Section 6 provides an empirical illustration of our

theoretical results, and Section 7 concludes. Proofs are presented in the appendix.



2 Preliminaries

Before introducing the concept of stochastic dominance in networks (Section 2.2) and for-
malizing the testing problem of interest (Section 3), we define the basic terminologies and

notations used throughout the study.

2.1 Networks

Let N = {1,2,...,n} denote a finite set of agents, and G(N) be the set of networks on N.
We define a network g over N as a pair of nodes and edges describing relationships (or links)
between agents 1,2,...,n. A network can be represented by a graph whose n x n adjacency
matrix has generic element g;; satisfying g;» = 1 if there is a directed link from agent

to ¢/

, and g;7 = 0 otherwise. By convention, we set g; = 0 for all i. The neighborhood
of agent 7 is the set of agents with whom ¢ has a directed link in network g, i.e., the set
Ni(g) = {i" € N|giv = 1}. We refer to the number of agent i’s neighbors, d,.; = card|-4i(g)],
as the degree of agent i.%

The degree distribution of network g is a vector Py = [pg.o,...,Pgks - - - Dg-(n—1)]’, Where
Pgr = card[{i: ds; = k}]/n is the proportion of nodes with degree k; thus p,, = 0 for
each k € Z,, X, Dgr = 1, and %, = {0, 1,..., n — 1} is the range of P,. The empirical

k€Tn
cumulative distribution function (cdf) of network g is the function F, : %, — [0,1] such

that F,(k) = YF py, for all k € Z,.

Example 1. Figure 1 illustrates three networks with n = 5 agents: a “circle” network
(Network g), a “directed star” network (Network ¢'), and a “complete” network (Network
9")-

80Qur definition of a neighborhood considers the out-degree of agent i, i.e. the number of links which

originate from agent i. However, it can also be defined using the in-degree of agent i, in which case,
Ai(g) = {i’ € N|gis = 1}. The choice of the definition depends mainly upon the application considered. For

undirected networks, g;;; = g;; and both definitions coincide.



Figure 1: Example of networks

(a) Network g (b) Network ¢’ (¢) Network ¢”

The characteristics of each network j € {g,¢’,¢"}, as per the above terminologies and
definitions— neighborhood: A (j), degree of agent: d;.;, degree distribution: P;, and empirical

cdf: F; —are summarized in Table 1.

Table 1: Characteristics of network j € {g,¢’,¢"}

characteristics | Network j — g g q"
M(J) {2,5} {2,3,4,5} {2,3,4,5}
A2(7) {1,3} 0 {1,3,4,5}
WA {2,4} 0 {1,2,4,5}
A7) {3,5} 0 {1,2,3,5}
A5(7) {1,4} 0 {1,2,3,4}
d;a 2 1 4
d;s 2 0 4
d;3 2 0 4
dj4 2 0 4
d;s 2 0 4
P, (0,0,1,0,0Y  (4/5,0,0,0,1/57  (0,0,0,0,1)
F, (0,0,1,1,1)  (4/5,4/5,4/5,4/5,1)" (0,0,0,0,1)




2.2 Stochastic Dominance in Networks

Consider the setup described in Section 2.1, and let g and ¢’ denote two networks in G(N)
with empirical cdfs F, and F, respectively. The first- and second-order? stochastic domi-

nance between g and ¢’ are characterized as follows.

Definition 1. (i) Network g first-order stochastically dominates network ¢', which we
write g > ¢', if Fy(k) < Fy(k)V k € %, with strict inequality for some k.
(ii) Network g second-order stochastically dominates ¢', which we write g >5 ¢, if

Zf:o F,(i) < Zf:o Fy(i) ¥V k € %, with strict inequality for some k.

It is straightforward to see from the above characterizations that first-order stochastic
dominance implies second-order stochastic dominance, but not the other way around. We

now illustrate the two concepts from the example of Section 2.1.

Example 1 (continued). Again, consider the three networks g, ¢’, and ¢” of Example 1.
From Table 2 below, the pairwise comparisons between the cumulative distributions of these
networks show that ¢” first-order stochastically dominates both ¢ and ¢’. Therefore, ¢” also
second-order stochastically dominates both ¢ and ¢'. However, as Fj (1) < F,(1) and F,(2) >
Fy(2), there exists no first-order stochastic dominance between g and ¢'. Nevertheless, g
second-order stochastically dominates ¢'. This reflects the fact that network ¢g has an average

degree at least as high as network ¢’ but a lower dispersion in agents’ degrees.

9The characterization of stochastic dominance can easily be extended to higher-order, but for simplicity

we mainly focus on the first- and second-order dominance for the remainder of the paper.



Table 2: Stochastic dominance between networks g, ¢’ and ¢g” of Example 1

k 0 1 2 3 4
Dok 0o 0 1 0 0
F,(k) o 0 1 1 1
SELE,G) [0 0 1 2 3
Do 08 0 0 0 02
Fy (k) 0.8 0.8 08 08 1

S Fy() |08 16 24 32 42

Dk o 0 0 0 1
Fyi(k) O 0 0 0 1
SEGEs() [0 0 0 0 1

We now wish to formulate hypotheses for assessing stochastic dominance in social net-

works from observed real world data.

3 Stochastic Dominance Hypothesis and Assumptions

We first formulate the problem of testing stochastic dominance hypotheses in Section 3.1.

Section 3.2 presents the basic notations and assumptions that are used in the paper.

3.1 Hypothesis Formulation

Let g and ¢’ be two networks observed on the same population of n agents, and let F
denote the empirical cdf associated with the degree distribution P; of network j € {g, ¢'}.
Finally, let N = {1,2,...} be the set of natural integers. Given m € N, we are interested in
assessing which network mth-order stochastically dominates the other. From Definition 1,
this problem can be formulated as a problem of testing the mth-order stochastic dominance

between the cdfs F, and Fy, i.e.,

d
Hop, : F, < Fy versus Hyy, : Fy >y Fyy AN Hapy i Fy £ Fy, (1)



(Ldﬂ

where “>,,” denotes the mth-order stochastic dominance operator, “=" and “:lli:” symbolize
equality and difference in distribution respectively. As can be seen clearly from (1), Ho,,
tests equality between Fj, and Fj, against: (i) mth-order stochastic dominance (Hy,,), and
(ii) no mth-order dominance (Hs,,). For example when m = 2, Hyy tests the equality
between F, and F against both second-order stochastic dominance (H;2) and no second-
order dominance (Hay). Several statistical procedures exist to assess stochastic dominance
hypotheses between two distributions, but to the best of our knowledge, this study is the
first to focus on extending these procedures to network theory.

In order to derive a testable formulation of problem (1) from the observed data, as well
as test statistics for assessing it, it is useful to first introduce the following notations and

assumptions.

3.2 Basic Notations and Assumptions

Let {(dg.i, dg.;)};_, be a sample of n observations drawn from the joint distribution of the
degree of agents in networks g and ¢'. Let F,, and Fj; denote the empirical cdfs of networks
g and ¢’ respectively, constructed as in Section 2.1. To build Pearson-type statistics for
assessing Ho,, in (1), we must first partition the range (support) of the degree distributions
of networks g and ¢’ into classes (or class intervals). To do this, we adapt the methodology
in Anderson (1996) to the context of social networks.

Let (di)zz be the pooled sample of 2n observations obtained by stacking the two sub-
samples (d,.;);_, and (dy.;);_,, and let Supp(d) S %, denote the support of the distribution
of ()7, , where %, = {0,1,2,...,n— 1} is the common range of the degree distributions of
networks g and ¢’. Note that Supp(d) need not be strictly equal to %,,. This is the case for

example if max {d“}l . < n— 1. For some fixed k € N, let P (I,..., It) = Py (I) :=

i,j€{g,9'} "
{Il}l:1 denote a finite partition of Supp(d) into k disjoint sets, i.e.

Supp(d) = | T L4+0, LnL=0V1#1, (2)

1<i<k

and define a collection of such partitions by
P = {P(k) (I): T={L}", satisfies (2 )} (3)

10



As Supp(d) is a discrete finite set, the collection & contains a finite number of elements
(or partitions) for a given k. Until now, we have implicitly assumed that the number k of
subsets and the division points between subsets (subsets’ cardinality) in (2) are available to
the investigator. In practice, one has to choose k as well as the division points between the
k resulting subsets, and it is well documented that these choices have an influence on the
properties (size and power) of Pearson-type tests. For samples generated from continuous
distributions, we have Supp(d) < R and I, = 1,2,... k are compact intervals in (2).
In this case, there is a number of seminal papers which provide rules to select k and the
lengths of subsequent intervals such that the resulting Pearson-type test is unbiased. For
example, Anderson (1996) suggests that power can be gained by locating partition points at
fractiles where it is thought that the two distributions may intersect. Since this information
is unknown, the standard advice by Mann and Wald (1942),° Gumbel (1943), and Williams
(1950), that power is gained by equalizing cell probabilities under the null whilst maintaining
an expected cell frequency of at least 5 is usually used in applied work.

The main difficulty in extending Mann and Wald (1942) and Williams (1950) rules of
thumb to the context of networks resides in the finite and discrete nature of the range of a
network’s degree distribution. For example, Figure 2 shows the degree distributions of two
commonly used networks: the Poisson random graph and the Scale-free network. While in
theory the range of both distributions is the entire positive integer set N, we see that both
distributions are concentrated between: 1-20 (for the Poisson random graph), and 1-9 (the
Scale-free network). Suppose we have a joint sample of n = 500 realizations of networks g
and ¢’ drawn from a population that follows one of these distributions. For a test at the

a = 5% nominal level (¢ = 1.64), Mann and Wald’s (1942) and Williams’s (1950) optimal

10Mann and Wald (1942) show that the optimal choice of the number of classes is k := #nt [4 A/ 2("6_21)2] ,
where n is the sample size, .#nt[x] is the integer part of any real x, and c¢ is determined so that
\/% Scf e~ 2dy is equal to the size of the critical region under Hps. One criticism of Mann and Wald’s
(1942) method is that it generates an unnecessarily large number of classes; see Schorr (1974). Williams
(1950) shows that halving this number does not substantially decrease the power of Pearson-type tests.
Although these rules of thumb are reasonable to follow, it is worth noting that they do not imply that
the resulting Pearson-type test is necessarily uniformly powerful against all alternatives; for example, see

Cochran (1952).

11



rules of thumb give k,,,, = 45 and k= = 23 respectively. These choices increase to k,,,,, = 59
and k , = 30 for a population of n = 1,000 agents. However, Figure 2 shows clearly that
even a choice of k = k, =23in (2) does not make it possible to equalize cell probabilities
under the null whilst maintaining an expected cell frequency of at least 5. Even though
this criterion may give a good approximation for Poisson random graphs in some instances
(for example when A is large enough), this is likely not the case for Scale-free networks.
Therefore, adjustments are needed to adapt Mann and Wald’s (1942) and Williams’s (1950)
rules of thumb to the network context. For this purpose, define k., = max Supp(d). Then,
a practical and simple rule of thumb could be to choose k < min[k_, max supp(d)] such that
Williams (1950) rule of thumb is close to being fulfilled. This can be achieved through a
careful analysis of the empirical histogram of the degree distributions such as in Figure 2.
For example, if the realizations of networks g and ¢’ are drawn from a Poisson population
(Figure 2-(a)), both choices: (i) k =4 and I) = {1,...,7}, I, = {8,9}, I; = {10,11}, I, =
{12,...,20}, and (ii) k =4 and I; = {1,...,9}, I, = {10}, I3 = {11}, I, = {12,...,20}, are
acceptable. However, the former is closer to the recommendation to equalize cell probabilities

than the latter.

Figure 2: The distribution of degrees for Poisson and Scale-free networks

Frequency
o
=

0.3

o
o

(a) Poisson with parameter A = 10 (b) Scale-free with parameter v = 2.5

To formally address the threshold of an expected cell frequency of at least 5, we first

12



introduce the following notations and definitions. Let p_,,j € {g, ¢’} be the probability that

d;.; falls in I;, and p,, denote the proportion of observations in (dj.;);_; which fall in I, i.e.

. 1 ¢
=1

If {(dg., dgi)};_, is 1.i.d. across 4, for given j € {g,¢'} and l € {1,...,k}, the probabilities
p,., are the same for all i, i.e., p,,, = p,, for all i and p_, is a consistent estimator of p_,.

Then, the expected numbers in cell [ for network j is given by

=np,, = Z]l dj; € Ip). (5)

To insure a valid approximation of the multinomial distribution to a multivariate normal
distribution, (2) must also guarantee that the minimum of the n;,;’s for all j € {g,¢'} and
I =1,...,k is at least 5. This threshold is usually imposed and the absence of a theory
to justify its validity has raised some concerns in several seminal papers; e.g., Cochran
(1952), Lewis and Burke (1949), and Edwards (1950). Yates (1934) provides a correction
for continuity that adjusts the formula for a Pearson-type statistic when this threshold is
violated. In this paper, we do not address the issues related to the choice of the minimum
expected number in cells. Rather, we consider the collection of all partitions P;f ) (I) for
which this requirement is satisfied, and we wish to provide tests of stochastic dominance
that control the size uniformly over this collection of partitions.

To be more specific, consider the partitions P\ (I) in (2) such that np,, > 5 for all
jel{g, g} and le{l,... k}. Let &, be a collection of such partitions, i.e.

P, = {P(k) (D) e 2 1= (L)}, satisfies np,, > 5; for all j € {g,g'} and I = 1,..., k:} . (6)

n

For the remainder of the paper, we shall refer to &2, as a collection of admissible partitions.
Note that np,, > 5 is the only restriction on the structure of P: ) (I) in (2), therefore there
are many admissible partitions Pi:c ) (I) that can be formed from the observed joint data
{(dgi, dgri)},_ ). As P is finite, &, is also a finite set of partitions. In such a context,

proving the uniform control of type-I error over &2, of the statistics considered for assessing

Hoy, in (1) is important.

13



Now, let

Ujg = []l (djz € Il>, R ]l(djz € Ik)]l , p]1 = E(U,]Z) = [pj-il’ e 7pj-ik]/7 (7)
. . . IS .
and p, = [p,,...,0,,.] = ﬁzuw, je{g, 9}, (8)
=1

where p,, and p,, are given in (4). Each estimated vector of probabilities p, in (8) is a
sample average of the realizations u;.; from a k-dimensional multinomial random variable

with vector of parameters p,, = [p D) Let i]j be an estimator of the covariance

i1yt

matrix of u;.; given by

Pn(L=D,1)  —D;abye Djabj
g, = | e Pall-5) T -
—D;4D;4 —D;.4D;a Pl =0,,)
and similarly, define
D,y =Pldyi€ldgiel), p . = %2 1(dy.; € T)1(dy.; € Ty), (10)
=1

and let igg: be an estimator of the covariance matrix of the (2k)-dimensional vector of joint

: !/ . ! ! :
variables (u.,; : u;, ;)" given by

pgg/-ll - pg.lpg/_1 pgg/_12 - pg.1p91_2 s pgg/_lk - pg.1pg/_]C
ﬁ _ pgg/_21 - pg.gpg/_l pgg/_22 - pg.ng/_2 11
99" = (11)
pgg’-kl - pg.kpg/_l pgg/_m - pg.kpg/_Q s pgg/_kk - pg.kpg/_k

Also, let 0,, = T"(p, — ﬁg,) be the scaled vector of contrasts, where T is a k& x k lower

triangular matrix of ones, and define

~ A~

Q, =T" [Eg + g — (Zgg + 2lgg')]Tlm =& ”]Kl,igk ‘ (12)

m-ll

Note that by construction, each of the k£ x k matrices ij,j €{g,¢'} in (9), f]gg/ in (11), and
f]g + igr = f]gg/ — f]’gg, in (12) have rank k — 1. Therefore, €, in (12) also has rank k — 1.

14



The notation an thus refers to the generalized inverse of @m hereinafter. From Dhrymes
(1978, Proposition 3.5), there exists a diagonal matrix ﬁk,l whose diagonal elements are
the nonzero eigenvalues of ,,, (in decreasing order of magnitude), and a k x (k — 1) matrix
}A’k_l whose columns are the (orthogonal) eigenvectors corresponding to the nonzero roots of

~

Q,,, such that
Q; = ﬁk—lﬁlz—ﬂﬁlgfr (13)

n

We now make the following assumption on the joint sample {(dg.;, dg.;)};_; -

Assumption 1. 2, := {(dgi,dg.)};_, is a i.i.d. random sample across i drawn from the

joint distribution of the degrees of networks g and ¢'.

In the above assumption, possible dependence between the distribution of the degrees
of the two networks is allowed. The i.i.d. sampling across the rows of the joint sample &,
preserves this dependence. In the case where g and ¢’ are independent, one can draw two
independent i.i.d. samples with different sizes: one from the population of network g, say
(dg);?, , and the second from the population of network ¢, say (dg/.i)?zgll. However, this
case excludes interesting situations where the populations of the two networks overlap, as is
usually the case in most empirical applications of social networks. In such contexts, while
it is reasonable to assume that (d,.;, dy.;) is independent of (dg.i, dy.i7) for i # 4', it is likely

that d,.; and dy.; will be correlated.

4 Test Statistics and asymptotic theory

We wish to first discuss how problem (1) can be recast in the more familiar language of
hypotheses specified on vectors of contrast. Under the i.i.d. sampling across observations in
Assumption 1, we havep, , = p,, in (4)andp,, = p, in (7) forall j € {g,¢'},i € {1,...,n} and
le{l,... k}. Therefore, it is straightforward to show that problem (1) can be equivalently

formulated!'! as:

Hoy,, : vy, = 0versus Hiyp i 0, <0 A Hopy i v, £ 0and v, 20 (14)

"See Anderson (1996) for a similar formulation.
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for any m e N, where v,,, = T" (p, — pg,) and T is given in (12). Since vy, is a k x 1 scaled
vector of contrasts, testing Hy,, in (14) involves k& multiple comparison procedures and there
is a risk of size control related to a simultaneous testing of the significance of pairwise con-
trasts. To avoid size distortions, Richmond (1982) proposes to use the studentized maximum
modulus (SMM) type statistic whose distribution is tabulated by Stoline and Ury (1979),
and the statistic is employed by Beach and Richmond (1985) to construct confidence regions
for Lorenz curve ordinates. In this paper, we combine the studentized maximum modulus
statistic with an adjusted version of Pearson’s (1900) statistic for assessing problem (14).
Anderson (1996) employed a similar method in the context of income distributions but his
methodology relies on the assumption that (d,.;);_, and (dy.;);_, are independent, while ours
is free of such a restriction.

To be more specific, suppose that Assumption 1 is satisfied. Hence, we have p, 2op

9
and p, 2 p,, so that the estimated contrast o, = T (p, — ﬁg,) Loy = T (p, — pg,).
If further Hy,, holds, v,, = 0 and v,, will be close to zero for a large enough sample size.
However, under H,,, or H,,,, neither v,, nor v,, will be close to zero. Therefore, one can
detect whether Hy,, is violated by looking at how far the estimated contrast v,, is from zero.
Since the estimated contrast 0, will not be exactly zero under Hy,, due to sampling error,
a conventional way to proceed is to construct the test statistic from the distribution of v,,.
This approach is extensively discussed in Hausman (1978) and widely used in econometrics,
especially in specification testing. Before we move on to the derivation of the statistics for

Hy,,, it is useful to establish the following convergence property for the estimated contrast

of probabilities p, — p ,, as well as its scaled variant 0, = T (p, — D)

Lemma 1. Suppose that Assumption 1 holds. For any admissible partition PS) I ez

A

we have:

Vi, =5,) = (0, = p,)] 5 N0, 5+ Ty = Ty - ), (15)
and /n(im —vn) > N0, Qu), (16)

where ¥; = plim(ij), je{g.d}, Ty = plim(f]gg,)7 Q=T (Z, + Xy — X,y — E’gg,)T'm,
n—00 n—00
Y and X,y are defined in (9) - (11).
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Lemma 1 follows by the multivariate central limit theorem (MVCLT) property and the
proof is presented in the appendix. It states that the estimated contrast (p, — ﬁg,) and
its scaled variant v, are root-n consistent and asymptotically normal. Anderson (1996)
assumes that ¥, = 0, so we have Q,, = T (3, + X,)T"" in his setup. In the context
of correlated samples (X,, # 0), a correction to Anderson’s (1996) statistics is necessary
to avoid size distortions, and the term —(3,, + 37 /) on the rhs of (16) is the adjustment
needed.'? In the appendix (see Lemma 4), we show that ,, can be consistently estimated
by O, = Tm(ig + f]g/ — f]gg/ = i'gg,)T'm, where f]j,j € {g,¢'} and igg/ are given in (9)- (11).
Observe that iggr is built from the contingency table obtained from the partition P’ (I)
(thus from the distribution of the joint sample), while f]j only exploits the information from
the marginal distribution of the sample of network j € {g,¢'}. The main conclusion here
is that even though the cdfs (hence the pdfs) of the two networks are equal under Hy,,,
constructing the Pearson- or SMM-type statistics solely based on them, as is usually done in
the literature on inequality and poverty measures, is not always the best way to go because
it does not account for the correlation structure between networks.

We now focus on the derivation of the test statistics for Hy,,.

4.1 Test Statistics and Decision Rule

Following Anderson (1996), we consider two statistics based on the estimated vector of
contrasts v,, for assessing Hy,,:

(k) o A . A AL
W..(P, (I)) = nv,’ﬂvamznv,'ﬂPk_le_llP,g_lvm,

n

S,.(PY(1) = max (|\/52ml|), (17)

1<i<k—1

where an is the [th component of ﬁ;ﬁ{zf’#l@m, ﬁk_l and ]3k_1 are given in (13). W, (P,(f) (I))
in (17) is a Pearson-type statistic expressed as a quadratic form in 0,,. It differs from that
in Anderson (1996) not only through the correction of the covariance matrix Qm, but also

its direct dependence on P.’(I). The dependence on P!\’ (I) underscores the importance of

120ur investigation through a Monte Carlo experiment shows that failing to adjust Anderson’s (1996)
statistics yields overly size distorted tests when the two samples (dg.;);_, and (dg.;);_, are correlated. In

order to shorten the exposition, this exercise is omitted from this paper but it is available upon request.
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controlling the size of the resulting test uniformly over the collection of admissible partitions
& . Uniformity over &, is crucial for the asymptotic results to give a good approximation
of the empirical size of the tests to the nominal level. S,,(P\’(I)) is a generalization of the
SMM statistic in Stoline and Ury (1979). Besides its dependence on P\ (I), the expression
of S, (P (I)) in (17) is conceptually different from those in Stoline and Ury (1979), Beach
and Richmond (1985), and Anderson (1996). For example, Beach and Richmond (1985)
and Anderson (1996) defined these statistics as max (@_ VA vml|> , where 0y, is the lth
component of 1, and @,y is the (I,1)" element of Qm. Since 0,,; and ©,,.; are not inde-
pendent by construction,'? Imax (@T;.ll/ﬂ\/ﬁﬁmﬂ) does not follow a SMM distribution under
Hym. By contrast, the expression of S,,(P.’(I)) in (17) converges to a SMM distribution
with parameter & — 1 and infinite degrees of freedom under Hy,, and Assumption 1 (see
Lemma 2). This is because we have adjusted this statistic as the maximum of the absolute
values of & — 1 non-redundant linear combinations of the components of y/no,,, where the
weights are the elements of the (k — 1) x k matrix D 2 Pk 1» while max (@m i |fvml|)
is obtained as the maximum of the absolute value of the k eomponen; ef the scaled vec-
tor [diag(ﬁk,lﬁgflﬁ,g_l)]l/2\/ﬁ@m. Moreover, one of the fundamental differences between
the two statistics in (17) is that W,,(P. (I)) does not depend on either T or m (order of
dominance tested),’* while S,,(P"(I)) depends on both.

Since U, - v, under Assumption 1, it is clear from (14) that F,, >, F, if all components
of v, are less or equal to zero, with a strict inequality at least for one. Hence, the statistic
W.,,,(PY (1)), which is a quadratic form in @y, if not combined with S,,(P'’(I)), tests the
equality between the cumulative distributions F;, and Fjy and a rejection does not necessary
entail stochastic dominance. Meanwhile, a rejection using the statistic S, (P' (I)) implies

stochastic dominance. Furthermore, the test with S,, (P (I)) asymptotically controls the

“familywise” rate of type I error in multiple comparison procedures (e.g., Richmond (1982)

13The upper a-points of the distribution of the SMM statistic, 1max ( el |fvml|> , in Stoline and
Ury (1979, Tables 1-3) are provided under the assumption that @,,; is independent of &y,.;;. However, the
partitioning into classes does not preserve this independence assumption.

14As T is invertible, T™ is also invertible for all m € N so that o, 6, = o/T™ T~™'Q T-™T™) =

o070, ie., W, (P(k)(I)) does not depend on either T nor m.
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and Beach and Richmond (1985)). A combination of the two statistics informs us on whether
‘stochastic dominance’ holds or not, once equality between the two distributions is rejected.
Formally, as long as the two statistics are combined, one of the following three levels of

decision can be reached given any admissible partition P\ (I) € 2, :
1. if W,,,(PY (1)) < ¢x(@), retain Hop:

2. if W, (P (1)) > cx(a) and S, (PY (1)) > si(a), retain Hypy;

n

3. if W, (P (1) > cx(a) and S, (PL (1)) < si(a), retain Hop,,

n

where for some a € (0, 1), the cut-off points cx(«) and sg(«) are determined such that
P[W,,(PY (I)) > ci(@)] — a and P[S,, (P (I)) > si(@)] — a under Hg,, as n — oo
(at least). Tests based on the two statistics are not equally powerful against both alterna-
tives Hy,, and Hy,,, especially in small samples. Indeed, in the case where one cumulative
distribution is completely below the other, both tests have good power. However, if the
cumulative distributions cross, the test with W,, (P’ (I)) is more powerful than those with
S,,(PY(I)). This is because W,,,(P"”(I)) is a quadratic form in y/nZ, = B;E{Qf’,gfl\/ﬁ@m
while S,,,(P.(I)) is the absolute value of the maximal component of VnZ, € RE-1. Fur-
thermore, from the functional forms of W, (P (I)) and S,,,(P.. (I)) in (17), a non-rejection
by the test with W,,(P"’ (I)) entails a non-rejection of those with S,,(P.(I)), as long as
the tests are performed at the same nominal level. Thus, retaining Hy,, when the test with
Wm(P;k ) (I)) fails to reject it asymptotically controls the “familywise” rate of type I error.
Hence, Bonferroni-type size correction for multiple comparison hypotheses is not warranted
in large samples. To enhance the small-sample performance of the test, we propose a boot-
strap method that is easy to implement from the observed data (see Section 4.3). But before

we move on to the bootstrap results, it is informative to study the asymptotic properties of

the standard tests first.

4.2 Asymptotic Properties of the tests

In this section, we characterize the large-sample properties (size and power) of the above tests

of stochastic dominance. To do this, we first study the asymptotic behavior of W, (P'. (I))

n
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and S,,(PY(I)) under both the null hypothesis (Ho,,) and the alternative hypotheses (Hyp,

and Ho,,). Lemma 2 presents the results.

Lemma 2. Let PS) (I) be any admissible partition in &,. Under Assumption 1, the following

convergence results hold as n goes to infinity:

(a) if Hop, is satisfied, we have

(k) d
=

W.,.(P,, (I)) Ck=1), Sa.(PY@)S max |Z] ~SMM(k—1,0),

" I<i<k—1
(b) if Hyp or Hay, is satisfied, we have

WPy (1) 5+, S,(P, (1) 5 +oo,

where 25 " N(0,1) foralll = 1,2,... k—1 and SMM (k—1, ) is the studentized mazimum

modulus distribution with parameter k — 1 and infinite degrees of freedom.

Lemma 2 - (a) shows that for any admissible partition Pif ) (I) in &, the asymptotic distri-
butions under Hy, of both statistics are nuisance parameters free. The statistic W, (P (I))
has the standard x2 asymptotic distribution, while that of S,,(P.’(I)) is non-standard but
its critical values are tabulated in Stoline and Ury (1979). Lemma 2- (b) indicates that the
statistics diverge under Hy,, or Hs,, for any admissible partition P;f ) (I) e #2,. We can now

establish the following results on the uniform control of the size over &, as well as test

consistency for any partition PL'(I) e 2, .

Theorem 1. Suppose that Assumption 1 is satisfied and let a € (0,1). As the sample size n

goes to infinity, the following convergence results holds:
(a) if Hop is satisfied, then we have

lim sup sup P[Wm(P(k) (1) > Xi,l(a)] = «, limsup sup P[Sm(PS) (@) > z,_,(a)] = o

n

n—w P n—w P

A A

(b) if Hypm or Hay, is satisfied, then we have

lim P[W,,,(P,” (1)) > x2 ()] =1, lmP[S, (P, (I)) >z ,()]=1YP, (1) e 2,,

n n
n—00 n—aeo
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where x> («) and z,_, (a) are the (1 — o)™ quantiles of a x*(k — 1)-distributed and a

SMM(k — 1, 00)-distributed random variables, respectively.

Theorem 1-(a) shows that tests based on both W,,,(P.(I)) and S,,(P.’ (I)) have correct
size uniformly over &,. Therefore, the asymptotic x? and SMM critical values provide good
approximations of the empirical critical values of W,,,(PL(I)) and S, (P (1)) if n is large.
Theorem 1-(b) indicates that both tests are consistent under Hy, or Hy, for any admissible
partition P:f ) (I) e &,. However, the finite-sample size and power of the tests depend on the
choice of P;k : (I) e &, and may not be as good as their asymptotic properties. To address

this issue, we propose a bootstrap method to enhance the finite-sample properties of the

tests. Section 4.3 presents the details.

4.3 Bootstrap Tests

In this section, we study the validity of the bootstrap for the statistics W,,(P. (I)) and
S,»(PY(I)). The usual intuition for the bootstrap requires that the empirical distribution,
from which the bootstrap sample is drawn, be close to the distribution of the data under the
null hypothesis. In our context, the empirical distribution used in the bootstrap sampling is
the empirical distribution of the joint sample %,, = {(dy.;, dg.;)};_, . To be more specific, the
bootstrap pseudo-samples and statistics, as well as the decision rule are obtained following

the above steps.

1. From the observed joint sample 2, = {(dg.;, dg.;)};_, , obtain a partition P () e 2,
and compute the realizations of the statistics W,,, (P (I)) and S,,(P\"(I)).

n

2. For each bootstrap sample b = 1, ..., M, generate the data I} = {(d;l, d;,,i) }z‘=1 ,

where (dj;, d3 ;) are drawn independently from the empirical distribution of the joint

sample Z,. From the re-sampled data and the partition P;k : (I), compute the realiza-

tions of the bootstrap statistics W*” (P (1)), S*”(PY' (1)) : b=1, ..., M, :
Wi @ M) = nonQien, Su M) = max (WVaZul), ()

Sk N N N* _ A* * A=I= *
where v, = 0F — Uy, 27, = Z%, — Zo; and Qm 0t 2 », are the bootstrap analogues

of Q,., Um, Zmi, respectively.
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3. The decision rule of the bootstrap test is as follows:

(a) if o~ z LW Py (1)) > W, (P (1))] = o where 1[C] = 1 if condition C' holds

and ]l[C’] = 0 otherwise, retain Ho,;

o1 M +®) 5 (k) ©) M, +(®) p k) p®
(b) 1fmb§111[wm (P, () > Wn(P, ()] <a A 5 Z i[ss" (P, (1) > Sy (P, ()]

a, retain Hy,y,;

My

(c) if 3 211[ 5 (P(1) > W (P ()] <an 4 z 1[s%” (P, (1)) > Su(P,’ (1)]

Q, retam Hs,,.

The bootstrap statistics in (18) are expressed in terms of o, = 0} — 0y, rather than
0y . 'This re-centering is important for the validity of the bootstrap as the expectation of 0,
under the bootstrap data generating process is v,,, which is not necessarily zero under Hy,,.
The importance of re-centering has extensively been discussed in the bootstrap literature
(e.g., Hall and Horowitz (1996), Hahn (1996), Andrews (2002), Brown and Newey (2002),
Inoue and Shintani (2006)).

In the remainder of the paper, the probability under the empirical distribution function
of the joint sample 2* conditional on the observed data %, is denoted by P*[-], and E*[]
is its corresponding expectation operator. Lemma 3 characterises the asymptotic behavior

of the bootstrap statistics of stochastic dominance.

(k) . .. ) . .
Lemma 3. Let P, (I) be any admissible partition in & ,. Under Assumption 1, the following

convergence results hold as n goes to infinity:

(a) if Hop is satisfied, then we have

W* PV I | 20 S Pk —1) as., S5 (P (D) | Zn > max |2 ~ SMM(k—1,0) a.s

1<i<k—-1

(b) if Hypy or Hay, is satisfied, then we have
W PYI) |2, B +oas SEPY X)) | Dy B 40 as.,

n

where 27 and SMM (k — 1,00) are defined in Lemma 2.
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Lemma 3 shows that the bootstrap provides a first-order approximation of the null lim-

(k)
n

iting distributions of the statistics W* (P.”(I)) and S* (P.’(I)), and is further consistent
under the alternative hypotheses Hy,, and Hs,,. These results hold irrespective of which par-
tition P\ (I) € 2, is used in the computation of the statistics. We can prove the following

theorem on the consistency of the bootstrap tests.

Theorem 2. Let P,(f) (I) be any admissible partition in &, and suppose that Assumption 1

A
1s satisfied. Then, the following convergence results hold as n goes to infinity, whether Ho,,

holds or not:

sup|P* (W% (P2 (I)) < w) — P(W,, (P (I)) < w)‘ 0 in probability P,
weR
Sup p* (S;(PS) (1)) < z) —P(Sn, (PS) I) < z)‘ — 0 in probability P.
zE

We now study the finite-sample performance (size and power) of both the standard and

bootstrap tests of stochastic dominance through a Monte Carlo experiment.

5 Monte Carlo Experiment

In this section, we use simulation to examine the finite-sample size and power performance of
both the standard and bootstrap tests of stochastic dominance. To shorten the exposition,
we only present the results for m = 2 in (1). So, the null hypothesis (Hyz) tests the equality
between the two networks’ distributions against second-order stochastic dominance (Hi2), or
no second-order stochastic dominance (Hsy). The data generating process (DGP) covers the
most common distributions that are used in applied work to model the degrees of networks.

Precisely, the two DGPs are specified as follows.
(I). (d,., dg,_i)',i =1,...,n, are drawn 1.i.d. across ¢ from a bivariate Poisson distribution

with mean (10, )" and correlation p. In this setup, the null hypothesis that the cdfs
of (d )n and (d )n

9-i/)4=1 g'i/i=1

either H12 or H22.

are equal can be expressed as A = 10. So, A # 10 describes

(D). (d,,.d,.)i = 1,...,n, are drawn i.i.d. across ¢ from a bivariate Scale-free distribu-
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tion'® with parameters (2.5,7)" and correlation p. As in design (I), the cdfs of (dg_l.)?:1
and (d )n

g'i/i=1

are equal for a given p if and only if v = 2.5. So, the values of v # 2.5

characterize a violation of the null hypothesis.

In both setups, we vary p (correlation between the two samples) in {—0.9, —0.5, 0, 0.5, 0.9},
but the results do not change qualitatively with alternative choices of p. In all cases, the
joint sample is generated using the algorithm provided by Macke et al. (2009) and Bethge
and Berens (2007). As noted in Figure 2, the support of the Poisson distribution with
A = 10 is in the range 1-20, while that of the Scale-free distribution with v = 2.5 is in the
range 1-9. Hence, any admissible partition may take these ranges into account. In order
to shorten the exposition, we consider two partitions for each setup. In design (I), the two
partitions are k = 4 and k = 8, while they are k = 3 and k = 4 in design (II). Specifi-
cally, P/ (1) := {I,, 15, I3, I,} = {{1,...,9}, {10}, {11}, {12+}} and P\ (I) := {I,,... L5} =
{{1,...,7},{8},{9}, {10}, {11}, {12}, {13}, {14+}} in design (I), and in design (II) we have
PU(D) = {11, L, I} — {1}, {2}, {3+}} and PL (1) = {I1, L, L L} = {{1}, {2}, {3}, {4+}}
All these partitions belong to Pif ) (I) e &£, and are thus admissible.

For the purpose of clarity and readability, we separate the analysis on the size from that

on the power.

5.1 Size Properties

In this section, we analyze the empirical rejection frequencies of both the standard and
bootstrap tests of stochastic dominance for various sample sizes: n € {100,200, 500}. In each
design and for each partition P! (I) specified above, the statistics W,,,(P" (1)), S,n (P (1)),
W (P (1)), and S* P\ (I)) are constructed as outlined in Sections 3.2, 4.1 & 4.3. The
nominal level for both the standard and bootstrap tests is set at o = 5% and the empirical
rejection frequencies are computed with M = 10,000 replications. The bootstrap critical
values are approximated using M, = 199 pseudo samples of size n. For the standard tests,

we use the (1 — @)™ quantiles of a x2(k — 1) - distributed random variable for W, (P'. (I))

n

15Note that the probability density function of a random variable D that follows a Scale-free distribution

is given by P(d) = d”'[¢(7)]”,d € N, where ((v) = Y14 = denotes the Riemann zeta function.
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and a SMM (k — 1, 0) - distributed random variable for S,,(P.’ (I)).

Table 3 presents the results of the two designs. The first column contains the partitions
P;f ) (I), and the second shows both the standard and bootstrap statistics. The other columns
present, for each value of network endogeneity (p) and sample size n, the empirical rejection
frequencies of the tests at the 5% nominal level.

First, in design (I) (Poisson distribution), the standard tests are slightly size distorted
for n € {100, 200}. Their maximal size rejection frequencies is around 8.7% [for W, (P5 (I))]
and 7.2% [for S,,(P.’(I))] with the partition P. (I), but they decrease with the partition
Pff ) (I) (around 6.5% and 6.2% respectively). Meanwhile, their bootstrap counterparts have
rejections close to the 5% nominal level in most cases for both partitions, even with n = 100.
However, the bootstrap tests tend to under reject when n = 100 and p = 0.9, but this
phenomenon disappears as the sample size increases. On top of its overall good performance
in small samples, our results also suggest that the bootstrap tests are less sensitive to parti-
tioning into classes than the standard tests. Also, our results are consistent across all values
of networks’ endogeneity p.

Second, in design (II) (Scale-free distribution), both the standard and bootstrap tests
perform quite well irrespective of the partition used and network endogeneity p. However, the
bootstrap tests tend to be conservative when p = 0.9 and n € {100,200} while the empirical
rejection frequencies of the standard tests are consistently around the 5% nominal level for
all sample sizes. Again, the under-rejections of the bootstrap tests observed when p = 0.9

and n € {100,200} disappear as the sample size increases, as shown in the column p = 0.9

and n = 500 in the bottom part of the table.

5.2 Power Properties

We now study the empirical rejections of the various tests under the alternative hypothesis
(power). For simplicity, we only present the power analysis for n € {100,500} and p €
{0,0.5,0.9}. In design (I) (Poisson distribution), the power analysis is conducted in the
direction of A\, where A = 10 indicates the empirical size and A # 10 indicates the empirical
power. Similarly, the power analysis is conducted in the direction of v in design (II) (Scale-

free distribution): here v = 2.5 indicates the empirical size, and v # 2.5 characterizes the
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Table 3: Empirical size of the standard and bootstrap tests at 5%

(I): Poisson distribution

—0.9 —0.5 p =0 p=0.5 p =0.9
P;lk) (I) | n — | 100 200 500 | 100 200 500 | 100 200 500 | 100 200 500 | 100 200 500
m | 97 51 54|60 58 50|62 60 50|65 56 50|60 55 50
S 56 53 51|58 58 50|58 53 51|62 54 47|58 52 52
P(I)
Wk | 45 47 50| 47 52 49 |47 52 48|51 48 47|36 48 438
Sk 44 48 50| 46 51 49| 48 47 49 |49 47 47 | 36 46 48
W, |78 66 59|78 65 56|81 65 59|87 66 57|74 61 53
S 6.8 6.1 55|72 H59 52|71 63 59|71 59 54|63 57 54
PY(1)
Wi 42 49 51|43 47 49 |43 49 51 |47 49 51|23 41 46
Sk 41 51 51| 47 49 48|44 53 53 |42 48 52 |21 42 5.0
(IT): Scale-free distribution
p=-0.9 p =-0.5 p =0 p=0.5 p=0.9
P;lk) (I) | n — | 100 200 500 | 100 200 500 | 100 200 500 | 100 200 500 | 100 200 500
m | 55 52 52160 56 50|56 52 53|55 54 54|43 49 5.1
S 54 51 53|58 55 48|56 52 50|57 54 52|48 51 5.2
Pi(I)
Wk | 47 48 52|52 52 49|50 49 51|43 49 54|16 35 49
Sk 46 47 52 |50 52 48 |50 49 46 | 45 49 51|12 3.7 5.0
W,, | 58 52 54|60 57 52|59 54 52|54 54 51|39 44 5.0
S 52 51 53|58 bH4 49|56 53 48 |55 54 51|42 48 52
P (1)
Wk 1 40 46 52|40 50 49|39 48 48|29 47 48|10 20 46
Sk 3.7 46 51 |41 48 48 |38 46 45|27 48 50| 04 21 47
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empirical power at 7.

Figures 3-4 show the power curves of both the standard and bootstrap tests in the two
partitions for design (I), while Figures 5- 6 present similar graphs for design (II) (Scale-free
distribution). In each figure, the sub-figures (a), (c), and (e) contain the power curves of
W,,,(P(I)) and its bootstrap version, while the the sub-figures (b), (d), and (f) display

the power curves of S,, (P, (I)) and its bootstrap version. Each sub-figure corresponds to a
value of networks’ endogeneity p € {0,0.5,0.9}.

First, when n = 500 and for both designs, the standard and the bootstrap tests perform
similarly, irrespective of the value of p and the partition used (see Figure 4 and Figure
6). While the empirical power of all tests converges to 100% for large values of A (Figure
4) and ~ (Figure 6), the convergence is much lower in design (II) (Scale-free distribution)
than in design (I) (Poisson distribution). This reflects the low speed of convergence in
the approximation of a multinomial distribution to a multivariate normal distribution (see
Lemma 1) when the original sample %, is drawn from a Scale-free distribution than when
it is drawn from a Poisson distribution. Although from the theory, both the standard and
bootstrap tests of stochastic dominance are consistent, knowing that the empirical power of
tests approaches 1 with a sample size of n = 500 is an interesting result.

Second, when the sample size is relatively small (here n = 100), substantial differences
between standard and bootstrap tests appear. First, both the standard and bootstrap tests
exhibit more power in design (I) (Poisson distribution) than in design (II) (Scale-free distri-
bution). For example, for independent networks (p = 0) or low correlated networks (p = 0.5),
the empirical power is low for both the standard and bootstrap tests in design (IT) (see sub-
figures (a), (b), (c¢) and (d) in Figure 5), while all tests exhibit more power in design (I) (see
see sub-figures (a), (b), (¢) and (d) in Figure 3). Second, within partitions, the standard and

bootstrap tests perform more similarly in design (I) than in design (II). The slightly higher
®

n

power of the standard tests in Figure 3, especially for p € {0,0.5} in partition P, , is due
to their inability to control for the type-I error (see Table 3). Looking at the power of the
bootstrap tests, partition Pf) has a small edge over partition PS), especially for p € {0,0.5}.
Mann and Wald (1942) and Williams (1950) recommended to allocate the same expected

number in each cell, whilst maintaining a threshold of above 5 in order to optimize test
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power. Although both partitions PS " and PS " are admissible (in the sense that a thresh-

old of above 5 is maintained in each cell), PS)

is closer to Mann and Wald’s (1942) and
Williams’s (1950) recommendation than Pf " when it comes to allocate the same expected
number in each cell. Note that the power gain from using PS " over Pf) decreases as: (i) p
(networks’ endogeneity) increases (see sub-figures (c)-(f) in Figure 3), or (ii) the sample size
increases (see Figure 4). Finally, in design (II) (Scale-free distribution), while the standard
tests perform similarly in the two partitions (and also outperform their bootstrap counter-
parts in most cases), the power of the bootstrap tests is lower with partition PS " than with
PS ' The power gain from using PS " over P: " can even be substantial, especially with the
bootstrap test S* (P\(I)) (see sub-figures (d) and (f) in Figure 5). Again, partition P'
is closer to Mann and Wald’s (1942) and Williams’s (1950) recommendation than partition
P

Clearly, although bootstrapping has an overall good performance in terms of size control
irrespective of which partition in &2, is used, our Monte Carlo results suggest that using the
partition that is closer to equalizing the expected number in cells can results in a substantial

power gain. Therefore, our recommendation is to follow this rule upon adjusting for the

form of the distribution of the degrees, as discussed in (2)-(6) of Section 3.2.
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Figure 3: Power with Poisson distribution: n = 100
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Figure 4: Power with Poisson distribution: n = 500
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Figure 5: Power with Scale-free distribution: n = 100
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Figure 6: Power with Scale-free distribution: n = 500
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6 Empirical Illustration

Rosenzweig and Stark (1989) illustrate the strategic role that women play in smoothing
consumption between villages whose income shocks are negatively correlated. In this ap-
plication, we investigate whether such a role exists for sharing risk between households in
rural India. In particular, we focus on testing gender differences across risk sharing networks
by using the stochastic dominance criteria. Bramoulle and Kranton (2007) characterize the
conditions that insure the existence of an aggregate strictly increasing (and even concave)
social welfare function in risk sharing networks, meaning that these networks could be ranked
in terms of social efficiency by applying the stochastic dominance criteria in Definition 1.

We use the data set from Banerjee et al. (2012, 2013) and Jackson et al. (2012) that
comprise a random sample of households from 75 different villages in southern India. We pool
the sub-samples from these villages to obtain one sample. The underlying assumption here
is that the 75 sub-samples are independent across villages, but not at the household level.
Each village contains on average 223 households with approximately half being sampled.
Each member of a surveyed household was asked to identify members of the village with
whom they engaged in a particular relationship, such as whose home they visit or with
whom they go to temple. Additionally, a census on the socioeconomic characteristics— such
as age, gender, religion, etc— of households was used to complete the data set; see Banerjee
et al. (2012, 2013) and Jackson et al. (2012) for a detailed description of the data.

To identify risk sharing behavior we use data on the following questions: Who would
come to you if he (or she) needed to borrow kerosene or rice? Who do you trust enough
that if he (or she) needed to borrow 50 rupees for a day you would lend it to him (or her)?
We construct female and male networks for each of the goods lending and money lending
relationships as follows. We remove from the sample any person who does not name at least
one connection, as it is difficult to distinguish non-response from having zero connections.
We also remove any person under the age of 18. Of the remaining observations, we omit
any household which does not contain at least one man and one woman. The networks are
then constructed with a node representing each household. In the female money lending

network, there is a directed link from household 7 to household 4’ if any woman in household
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i has reported that she would lend money to any member (male or female) of household @',
and similarly for the male money lending network. This means that the male and female
networks have the same set of households as nodes and the gender corresponding to the
network determines the set of directed links. The goods lending networks are constructed
similarly. As an illustration, Figure 7 shows these networks within the households of village

1 in the data.

Figure 7: Risk Sharing Networks for Village 1

(c) Female Money lending (d) Male Money Lending
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As outlined above, we conduct the tests using the pooled sample of all 75 villages. The
pooled sample has size n = 5924 households in goods lending networks, and n = 5656
households in money lending networks. Table 4 summarizes the out-degree distributions of
these networks as well as the correlations between male and female networks for both goods
lending and money lending. As seen, the correlation between male and female networks is
not small: 0.55 (for goods lending) and 0.46 (for money lending). Furthermore, in each
case (goods lending and money lending) the degree distributions of both male and female
networks are closer to the degree distribution of a Poisson random graph than that of a scale-
free network (see Figure 2). From Sections 3.2-5, we use the following admissible partition

with k£ = 5 based on Table 4:
P)(I) ={L},, L ={l}forl=1,...,4and I = {5+}. (19)

In both the goods lending and money lending networks, we test whether the female
network first- and second-order stochastically dominates the male network. The tests are run
at the 1% and 5% nominal levels, and the bootstrap statistics critical values are approximated
using B = 199 pseudo-samples. The results are displayed in table 5. For goods lending,
both the standard and bootstrap tests are in favor of the first- and second-order stochastic
dominance of the female network at the 1% and 5% nominal levels. However, for money
lending, we could only find evidence of the first- and second-order dominance of the female
network at the 5% nominal level. At the 1% nominal level, neither network dominates
the other using both the standard and bootstrap tests. These results suggest that women
overall tend to form denser risk sharing networks than do men, especially for goods lending.
One possible explanation for this might be a higher average risk aversion among women, as

documented by Borghans et al. (2009).
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Table 4: Empirical Degree Distributions

Goods Money
Degree Male Female Male Female
1 527 426 962 1012
2 2554 2133 26563 2509
3 1801 1831 1270 1263
4 734 1014 460 564
5 172 306 164 194
6 94 136 82 69
7 32 46 39 21
8 7 19 17 14
9 0 5 3 3
10 2 6 2 5
11 0 2 1
12 0 0 0 1
13 0 0 2 0
14 1 0 1 0
Obs. 5924 5924 5656 5656
Correlation 0.55 0.46
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Table 5: Stochastic dominance between female and male networks

Goods lending networks

a=0.01 a=0.05
Statistics | m — 1 2 1 2
W,, 310.08 310.08 310.08 310.08
X3 (o) 13.28  13.28 9.49 9.49
cw, (@) 11.49  12.36 9.32 10.09
S 16.92  17.01 16.92  17.01
z4(@) 3.02 3.02 2.49 2.49
c§ (a) 3.17 2.93 2.64 2.60

Money lending networks

a=0.01 a=0.05
Statistics | m — 1 2 1 2
W,, 19.29  19.29 19.29  19.29
X3 (@) 13.28  13.28 9.49 9.49
cw, (@) 15.60 16.73 11.07  8.80
S 2.92 2.59 2.92 2.59
z4(@) 3.02 3.02 2.49 2.49
cg (@) 3.05 3.38 2.59 2.47

T x2(a) and z4(a) are the (1 —a)" quantiles of a chi-squared distributed random variable with 4 degrees

of freedom a SM M (4, 0)-distributed random variable respectively.

I ey, (@) and c§ () are the (1—a)" critical values of the bootstrap statistics W and S, respectively.
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7 Conclusion

This paper has illustrated how stochastic dominance criteria can be used to rank networks in
terms of social efficiency, and developed statistical tests for assessing these criteria. The tests
proposed can be seen as a generalization of the Pearson-type and the studentized maximum
modulus (SMM)-type statistics usually employed for assessing stochastic dominance criteria
in the literature on income distributions, poverty and inequality measures. Our statistics
differ from the prior literature not only through a correction to account for the correlation
between the degree distributions of networks, but also their direct dependence on partitioning
into classes. We show that a combination of the modified Pearson- and SMM-type statistics
into a single decision rule is necessary to inform us on whether stochastic dominance holds
or not, once equality between the degree distributions of the networks is rejected. As these
statistics often depend on the way class intervals are allocated, controlling for type-I error

16 is important for the asymptotic

uniformly over the set of all admissible class allocations
results to give a good approximation of their empirical size to the nominal level.

We provide an analysis of both the size and power properties of the tests. On level
control, we establish uniform convergence of their empirical size to the nominal level when
the usual asymptotic chi-square and SMM critical values are applied. On power, we show
that test consistency holds no matter which admissible partition is used. Finally, we provide
a bootstrap method that enhances the finite-sample performance of the tests. We estab-
lish uniform consistency of the bootstrap for both the proposed Pearson- and SMM-tests
irrespective of whether the null hypothesis holds or not. We present a Monte Carlo experi-
ment that confirms our theoretical findings. Using the data set of Jackson et al. (2012) and
Banerjee et al. (2012, 2013), the proposed tests were illustrated through an investigation of
households’ risk sharing networks across 75 villages in rural India. Both the goods lending
and money lending networks were considered, and the gender difference within each network

was our main focus. Our results suggested that women within these villages overall tend to

form denser risk sharing networks than do men, especially for goods lending.

6By admissible class allocation or admissible partition, we mean a partition in which the minimum ex-

pected number in each cell is at least 5.
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A  Appendix: Proofs

In order to establish the proofs of the lemmata and theorems of the main text, it is useful

to state some basic convergence of covariance matrices ZA]j, jelg, '}, f]gg/, and (Alm given in
(9)- (12).

Lemma 4. Suppose that Assumption 1 holds. For any P;f) (I) e 2, we have:

A

pj.1 (1 - pj.1) _pj.1pj.2 LI _p]'.1pj.k

>

(i.) plim(E;) = %;:= _pj'?pj'l pj'Q(l__pj'Q) Viedg gt
n—>00
D, 051 “DPin o (1=,
Poyay = PgrPyy Doy = Pealyy o Doy~ Pyalys
(”')QEE.}@QQ’) _ sy | P TPt P~ Paaly : ’
Poyir ~PoiPys Doz~ PosPys -+ Poyue — PoiP oy

(iii.) plim(Qyn)

n—oo

Qu i= T (Sg + By — Bgg — X0 )T

Proof of Lemma 4. (i.) Suppose that Assumption 1 holds and let P, (I) = {I,}_, e
2 ,. From the i.i.d. sampling, it follows that p,, = L 3" | 1(d;; € I,) > E(d;.;) = p,,, = p,,
for all (5,0) € {g,¢'} x {1,...,k}. It is clear from (9) that &; B %, for all j € {g,¢'}. The

proof of (ii.) follows the same steps and (7ii.) is implied by (i.) and (ii.).

Proof of Lemma 1. Let P (I) = I} . e 2, and define
n =1 A
p=100 01 p=10 0] (20)

where p, = [p,,, ..., D, : kx1,p, = [}59,_1, o ,ﬁg,_k]’ tkx1,p, = [pays-- 0, tkx1, and
p, = [Ppis---Pp, ]k x 1,50 both p and p are 2k x 1 vectors obtained by stacking p, and
b, together (for p) and p, and p,, together (for p). From (7)-(8), we have p, = %Z?:l ;i
and for each j € {g,¢'}, ujy, ¢ = 1,...,n are i.i.d. multinomial random variables with

parameter p, = E(u;;) under Assumption 1. Therefore, by the multivariate central limit
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theorem (MVCLT), we have:

. 1 ¢ Ug.i — E(uy.i) d
\/ﬁ(p - p) = = Z ! ! — N (07 EID) ) (21)
s g — E(ug.i)
where ¥, = Avar \/LEZ?:l I (tg) = 77 %, and X,y are the
!
Ugrq — E(ug/.i) Egg’ Eg/

limits in Lemma 4. Now, let I, be the identity matrix of order k. By noting that

| o -5 |veG-p) = | -5 |ve P =Py

pg/ - pgr

= Vil =9,) = (b, = p,)]. (22)

it is straightforward to see that \/n[(p, —p,) — (p, —p,)] 4N [0, By + 2y — (Zgy +20,)]

g

from (21). This completes the proof of Lemma 1.

Proof of Lemma 2. Suppose that Assumption 1 holds and let P\ (I) = {I}f | € 22, .

n

(a) Assume first that Hon, holds, ie., p, = p,. We focus on the statistic W,..(PY(1)).

The proof for S,,(P.’ (I)) can easily be adapted from Stoline and Ury (1979). From Lemmas
*)

n

Mmoo, oA ~ Hom m oA ~ d
VAT [(B, —p,) — (p, —p,)] =" V0T (B, —b,) = m ~ N (0, Q) so that we get

1 and 4, along with the expression of W,,(P, " (I)) in (12), it is straightforward to see that

W (P (1) 5 40, o, (23)

where Q,, = Xy + 3, — (30 +3 ), and Q,, is the generalized inverse of Q,,. As rank({,) =
k — 1, there exists [see Dhrymes (1978, Proposition 3.5)] a diagonal matrix Dj_; whose
diagonal elements are the nonzero eigenvalues of €2,,, (in decreasing order of magnitude), and
a k x (k—1) matrix P, ; whose columns are the (orthogonal) eigenvectors corresponding to

the nonzero roots of €2,,, such that
Qm = pklekflpl::—l and Q;,L = pkleki—llpl::—l' (24)

Hence, we have: 1/, Q th, = ¥, Px 1D Pl_ by = ¥, D}y, from the last identity in
(24), where v, = P, . Since ¥, ~ N (0, Q,,), we have ¥, ~ N (O, P,;lemPk_l) =
N (0, P{_yPeoyDy—1P]_Py—1) = N (0, Di_y) from the first identity in (24), where P;,_, P,—; =
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I_1. Therefore, D, *1h, ~ N (0, Ij_1) so that W,,(PY (1)) 5 o/ Dit by, ~ x2(k — 1), as
stated.

(b) Assume now that Hi,, or Ha, is true. Hence, we have p, — p, # 0 so that
Om 2> Uy = T (p, — pg,) # 0. Furthermore, as Qm 2 Q,,, it is clear that @%Q;ﬁm LN (p, —
p,) T, T"(p, —p,) > 0 because rank((2,,) = k — 1. Therefore, we find W,,,(PY (1)) =

nd! QO O, B +00. Similarly, we can see that S,, (P (I)) % +00. This completes the proof

n

of Lemma 2.

Proof of Theorem 1. (a) Suppose first that Hy,, holds. Since &, is a discrete and finite set
of collection of partitions P!\ (I), the sequence of probabilities a%’?b[P;k) (1), W, (P (I))] =
PIW,, (P (1) > ¢ , ()] € [0, 1] and al[PL (1), 8,,(PL (1)] = B[S, (PL(1) > =, ,(a)] €
[0,1] can be ordered for all possible collections P (I) € 2, . Therefore, there are sequences
P¥ PP e &, and subsequences {m, : n =1}, {f, : n =1} of {n: n > 1} such that

limsup sup af')[P,,” (1), Wi (P, ()] := lim sup sup P[W, (P, (D) > X7 ()]
oo fng ) n—>00 BZA
= limsup P[W,,,(P®)) > 2 (a)]

n— o

= lim B[W,,(B%) > 2 (a)]. (25)

n—

lim sup sup ag@l[P:) (I), Sm(P;k) (I))] := limsup sup P[Sm(Pif) (I)) > z,_,(a)]
n—w 2, n—w 2,
= limsupP[S,,(P¥)) > 2 (a)]

n— o

= lim P[S,(PY) >z (). (26)

n— 0

But from Lemma 2-(a), we have lim P[W,,(P%) > X2 ()] =Px?, >x? (a)] = aand

n— o

lim P[Sm(f’gi)) >z, ()] =P[SMM(k,0) > z,_, («)] = a. Using (25)-(26), we get:

lim sup sup ]P’[Wm(P(k) (I)) > x?_, ()] = o and lim sup sup P[Sm(PS) I) > z_,(a)] = a.

n

9 9
n—00 ‘]A n—ao JA

(b) Under Hy,, or Hop,, the results follow immediately from Lemma 2-(b).

n

Proof of Lemma 3. We prove the results for W* (P\’(I)). The proof for S* (PL’(I))
can be constructed in a similar way. First, we can write the bootstrap statistic W* (PL” (I))

as

W (PYI) = ne®QF 0% = n(d* — 0,)' Q% (8% — 0,). (27)

n mTTm "m
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(a) Suppose first that Hy,, holds and let S* = v/n(0}, — v,,). We can express S as:

ZRmZ, where R} ; = TﬁT [(d = ﬁ; Ugi — Ugli ]

Moreover, from the i.i.d. sampling under P*, we have E*(d}, —d% ;) = + 37" | (ugi — tg), SO
that R} ; can be expressed as R} ; = \/—ﬁTm [dz, — dy.; — E* (d;‘,i — d;f,.i)], ie., {Ry }i, are
also i.i.d under P*. We want to verify the conditions of the Liapunov Central Limit Theorem

for S..
(a) By definition, it is straightforward to see that E*(Ry, ;) = 0.
(b) E*(szz) = var*(R},;) = n 10, < o a.s.

(¢) Finally, we need to show that lim >.©"  E*[|R%,,;|*™°] = 0 a.s. for some § > 0. We have:
n—ao ’

n n

s
SE QR < o tnt YEITm(g— )P+ 1 3T g — ) 2]
=1 =1 z 1

ZT (Ug-i — Ugr.i)

2446
= e EE*|| T (dy — dy)|* | + en

for a large enough constant ¢ € R*.

First, we have 2 3" | T™(ug; — ug.;) > T™(p, — p,) = vm = 0 under Assumption
1 and Hy,,. So, the second term of the last equality in the above equation is such

1 n - 246 s
Ezz‘:l T (ugi — ug.i)

that cn’% L 0 since en~2 — 0 when n — oo. For the

246
first term, we note that E*[HTm(d;i - d;’~i)H2+6] T %Z?:l T (ug — ug.;) and
L\ pm i 246 o1
2 21 T (ugi — ugrs) = | T™(p, — p,) = |vm[*T° = 0 when

Hy,, holds. So, we get cn*g]E*[HTm(d;i —d.)*] % 0 a.s. As a result, we have
J%ZizlE [HRm,z

| = 0 a.s. as required.

Since @;"n—@m | 9, %30, Qm % Q,,, and the conditions of the Liapunov CLT are satisfied,we

have
SE | Dy S by ~ N0, Q) a.s

Now, we want to show that W* (P (1)) | 2, > x2(k — 1) a.s. for any P (I) € Z,. From
(27) and the fact that Q. | 2, 5 Q,, a.s., it is straightforward to see that

W PV |2, = S¥O5 5% | Dy S Qb a.s. (28)

m-Tm Tm
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Since we have ¢/ Qb ~ x2(k — 1) by Lemma 2, it is clear that W* (P (I)) | 2, 4,

X2k —1) as. for all P, (I) € 2, as stated.

(b) Suppose now that Hy,, fails, i.e., Hy,, or Ha,, holds. It is easy to see from the proof in
(a) that — LSE | Dy D v acs, Q* | 2, 5 Q,, a.s. so that W*(P(k)( D) |2, Q v, >
0 because v,, # 0 under Hy,, or Ha,. Therefore, we have W* (PY (1)) | 2, & +o0 a.s.

under Hy,, or Hs, for any Pif ) (I) e 2, as required.

Proof of Theorem 2. As in Lemma 3, we will prove the results for W* (PL(I)). The
proof for S* (PY”(I)) can be constructed in a similar way.

(a) Suppose first that Hp, holds. We know from Lemma 3 that Qf — Q,, | 2, “5 0
and ﬁm has rank & — 1 by construction. Hence, Q;‘;L also has rank k£ — 1 a.s. Therefore,
from Dhrymes (1978, Proposition 3.5) there exists a diagonal matrix 152_1 whose diagonal
elements are the nonzero eigenvalues of Q* (in decreasing order of magnitude), a k x (k — 1)

matrix P,:‘fl whose columns are the (orthogonal) eigenvectors corresponding to the nonzero

roots of an, such that

~

Q=P \Dp Py and Q=P Dy Py, (29)
where P | and D} | satisfy the following convergence:
p,:,l | 2, % P, a.s.. and ZA),’;fl | 2, % Dy as., (30)

where P,_1 and Dj_; are the matrices defined in equation (24) [in the proof of Lemma 2].

Now, from the proof of Lemma 3, we can express W* (P (I)) as:

W* (P(I) = S¥Qr §* = 55" (31)

m~m?

where g* D~ 11/2P,;‘ SE =3 R R, and {R mitie1 are also i.i.d under P*. By adapting

m,t

the proof of the Liapunov Central Limit Theorem in Lemma 3, we have
S* 19, 5 N(O, Ii_1) as. (32)

Moreover, since {R mitiz1 are 1i.d under P* with finite second moments, from the Berry-

Esseen theorem for sums of independent random vectors, we have

sup [P*(3, < o) - \\ ZE* I, 2, (33)

reRk-1
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where ¢(k) is a constant that depends on k (= dimension of S*), ®(-) = cdf of N(0, I;_y).
Moreover, by adapting the proof of the Liapunov Central Limit Theorem in step (c) of the

proof of Lemma 3, we have

1/2 -~ 1/2 »

n n n
~ _5 _
SRR ] = 33 (1D B 2] < enint S (VD BT~ 0P

i=1
=N DB T g — 248| = =X || DE- P T (dE, — dF) |2
+|l Z ko1 i T (ugs —ugi) |77 = cen |Di—1 P T (dg; — dg )II7™° +

2446
cno 2

1/2 ~
EDk VP T (ug — ugr)

for a large enough constant ¢ € R*. However, the second term of the last equality in (34) is

such that:
s s s " 245,
2 ZDk UPE T (ugs — ug) = 0 a.s.
1\ %~ 1/2 Dyl m o _1/2 / 2+o
because |- 7" DT P T (ugs — ug) P v, = 0 under Hy,, and

cn~% — 0 as n — oo. Similarly, the first term of the last equality in (34) is such that:

cn~SE* [||D SRR T, — d;‘,.i)||2+‘5] 2 0a.s.

1/2 * n A ~ 246
because E* [HD o PI: T (dg.; — dzr.i)HQM] = %21'21 Dk,l{QPléfle(ugd — Ug;) and
iy Dy P T (g — ug) i 2p ‘2+6 = 0 under Hy,,; and in additi

i=1"k-1 " k-1 g-i g’ k—1 —1Ym 0om» 0on

cn % — 0 as n — co. Therefore, we have > 1IE*[HR 1711 2, 2 0 a.s. in prob-P, which
entails that &2 ZZ 1IE*[||R 701 | 2 B 0 a.s. in prob-P. From (33), it is clear that we
have
sup |P*(S* <) — CID(x)‘ % 0 in prob-P. (35)
xeRF-1
Now, by using (31), we can write P*(W* (PY(I)) < w) as: P*(W* (P (I)) < w) =

P*(S* € 6,,) where 6, = {x € R¥"! : 2/z < w} are convex sets in R¥~*. From Bhattacharya

and Rao (1976, Corollary 3.2), we have sup®((0¢,)¢) < d.e for some constant d and € > 0.
weR

Hence, Bhattacharya and Ghosh (1978, Theorem 1) holds with W, = W* (P (I)) and
B =%, thus

sup|P*(W* (PY(D) < w) — Gk,l(w)‘ 2, 0'in prob-P, (36)

weR
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where G_1(-) = cdf of x?(k — 1). Finally, we have:
sup|P*(Wx (P (1)) < w) — P(W,,,(PY (1)) < w)| & 0 in prob-P by Lemma 2.
weR

(b) Under Hy,, or Hy,,, the results follow straightforwardly from Lemma 2-(b) and Lemma
3-(b), so the proof is omitted.
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