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Abstract

This paper illustrates how stochastic dominance criteria can be used to rank social

networks in terms of efficiency, and develops statistical inference procedures for as-

sessing these criteria. The tests proposed can be viewed as extensions of a Pearson

goodness-of-fit test and a studentized maximum modulus test often used to partially

rank income distributions and inequality measures. We establish uniform convergence

of the empirical size of the tests to the nominal level, and show their consistency under

the usual conditions that guarantee the validity of the approximation of a multinomial

distribution to a Gaussian distribution. Furthermore, we propose a bootstrap method

that enhances the finite-sample properties of the tests. The performance of the tests is

illustrated via Monte Carlo experiments and an empirical application to risk sharing

networks in rural India.
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1 Introduction

This paper considers the problem of assessing stochastic dominance criteria in network the-

ory. Many economic and social interactions involve network relationships, and the role that

networks play in determining economic outcomes– such as trade and exchange of goods in

non-centralized markets (e.g., Tesfatsion (1997)), provision of mutual insurance in developing

countries (e.g., Fafchamps and Lund (2003)), and job search (e.g., Calvo-Armengol (2004))–

is now recognized. Recent statistical and econometric studies in network theory have often

focused on the estimation of network relationships,1 and the identification of peer effects.2

Statistical methods for understanding how individual incentives to form networks align with

social efficiency are yet to be developed.

This paper illustrates how stochastic dominance criteria can be used to rank networks

in terms of social efficiency, and proposes a nonparametric procedure for assessing these

criteria. Often, standard measures– such as the Gini-coefficient or Lorenz curves– are used

to rank income and poverty distributions in terms of social efficiency. However, in addition

to being relative measures,3 two income or poverty distributions such that one second-order

statistically dominates the other may result in a same value of these measures. For theses

reasons, stochastic dominance criteria are usually preferred to provide a partial ordering

of inequality and poverty measures (e.g., Atkinson (1987) and Anderson (1996)), and the

concept, as well as its connection to social welfare theory, now extends to network theory

(e.g., Goyal (2012) and Jackson et al. (2008)). To illustrate how the stochastic dominance

criteria could provide a partial ordering of networks, let N � t1, 2, . . . , nu be a finite set of n

agents and GpNq be the set of networks on N. Let Wpdgq denote the aggregate social welfare

function of network g P GpNq, where dg � pdg�1, . . . , dg�nq1 and dg�i is the degree of agent i P N
in g. Following Goyal (2012, Section 7.4), network g P GpNq is said to be socially efficient

1See Chandrasekhar (2016), Leung (2015), Banerjee et al. (2013), Liu (2013), Bickel et al. (2011), and

Bickel and Chen (2009) among others.
2See Hsieh and Lee (2016), Blume et al. (2015), Bursztyn et al. (2014), Goldsmith-Pinkham and Imbens

(2013), Jackson (2014), Graham (2014), and Aliprantis and Richter (2013) among others.
3For example, changing income inequality, measured by Gini-coefficients, can be due to structural changes

in a society such as aging populations, emigration,immigration, etc.
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if Wpdgq ¥ Wpdg1q for all g1 P GpNq. Therefore, if Wpdgq is a nondecreasing and strictly

concave function of dg�i for all i P N, then second-order stochastic dominance between the

degree distributions of two networks g and g1 in GpNq is equivalent to dominance between

Wpdgq and Wpdg1q in the same direction (e.g., Rothschild and Stiglitz (1970)). Therefore, the

stochastic dominance criteria provide a partial ordering of the elements of GpNq in terms of

social efficiency in this setting, and developing statistical methods to establish this ordering

from the observed network relationships can be of great interest in social science.

Tests similar to that of Pearson (1900) are often used for assessing stochastic dominance

hypotheses in the literature on inequality and poverty measures,4 but to the best of our

knowledge, this study is the first to focus on extending these procedures to network theory.

Anderson (1996) suggests a combination of Pearson-type and studentized maximum modulus

(SMM) tests5 in a single decision rule for assessing stochastic dominance of income distribu-

tions. His methodology is nonetheless not directly applicable in the context of networks for

the following reasons. First, both tests are derived in his framework under the assumption

that the samples are independent. Although this may be reasonable in the literature on

income distributions and poverty measures, it is less likely to be the case in network theory,

as it excludes interesting situations where networks’ populations overlap. For example, when

comparing risk sharing networks formed by men and women within a village (or commu-

nity), it is reasonable to assume that the two networks are independent across households,

while the correlation between the two networks is likely high within households. Second,

partitioning of samples into classes is usually required to implement a Pearson-type test,

and it is well documented that such a partitioning has an influence on the properties (size

and power) of the resulting test.6 In the case where the samples are drawn from a continuous

distribution, Mann and Wald (1942) and Williams (1950) propose rules of thumb to select

the number of classes and the lengths of subsequent intervals such that the resulting test is

unbiased. These optimal rules are usually obtained by equalizing cell probabilities under the

4For example, see McFadden (1989), Anderson (1996), Davidson and Duclos (2000), Barrett and Donald

(2003), Linton et al. (2005), and Barrett et al. (2014).
5See Stoline and Ury (1979) for the tabulation of the critical values of the SMM statistics.
6See Hotelling (1930), Mann and Wald (1942), Gumbel (1943), Williams (1950), Cochran (1952), and

Schorr (1974) among others.
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null whilst maintaining an expected cell frequency of at least 5 (e.g., Anderson (1996)). The

main difficulty in extending Mann and Wald (1942) and Williams (1950) rules of thumb to

the context of networks resides in the finite and discrete nature of the range of a network’s

degree distribution.

Our contribution in this paper is threefold. First, we propose an adjustment to Mann and

Wald (1942) and Williams (1950) rules of thumb that applies to the context of networks.

We show how the optimal choice of the number of classes can be approximated through

a careful analysis of the empirical histogram of the degree distributions of the networks.

Second, we propose a generalization of the Pearson- and SMM-type statistics in Anderson

(1996) that are valid even when the samples are correlated, thus applicable to the context of

network theory. Our statistics differ from that of Anderson (1996) and prior literature not

only through the correction to account for the correlation between the degree distributions of

the networks, but also their direct dependence on partitioning into classes. We show that a

combination of the two modified statistics into a single decision rule is necessary to inform us

on whether stochastic dominance holds or not, once equality between the degree distributions

of the networks is rejected. As the modified statistics depend on partitioning into classes,

controlling the size of the resulting tests uniformly over the set of all admissible partitions7

is important for the asymptotic results to give a good approximation of the empirical size to

the nominal level. Finally, we provide a bootstrap procedure that improves the finite-sample

performance of both the modified Pearson- and SMM-statistics.

We provide an analysis of both the size and power properties of the tests under weaker

assumptions than is usually the case in most applications of Pearson’s (1900) goodness-of-fit

test. On level control, we establish uniform convergence of their empirical size to the nominal

level over the set of all admissible partitions when the usual asymptotic chi-square and SMM

critical values are applied. On power, we show that test consistency holds no matter which

admissible partition is used. Moreover, we establish uniform consistency of the bootstrap

for the two modified Pearson- and SMM-tests irrespective of whether the null hypothesis

holds or not. We present a Monte Carlo experiment that confirms our theoretical findings.

In particular, while the standard tests sometimes tend to over-reject the null hypothesis

7An admissible partition is a partition in which the minimum expected number in each cell is at least 5.
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if the sample size is small, the bootstrap tests have an overall good performance in such

contexts. Finally, using the data set of Jackson et al. (2012) and Banerjee et al. (2012, 2013),

we illustrate our theory through an investigation of the households’ risk sharing networks

across 75 villages in rural India. In particular, we focus on both the goods lending and

money lending networks, and test gender differences within these networks by applying the

tests of stochastic dominance developed. For goods lending, both the standard and bootstrap

tests show that the female network first- and second-order stochastically dominates the male

network at the 1% and 5% nominal levels. However, for money lending, we could only find

evidence of the first- and second-order dominance of the female network at the 5% nominal

level. At the 1% nominal level, neither network dominates the other with both the standard

and bootstrap tests. These results suggest that women within these villages overall tend to

form denser risk sharing networks than do men, especially for goods lending.

Throughout this paper, for any vector x � px1, . . . , xkq1 P Rk, the notation “x ¤ 0”

means xl ¤ 0 for all l � 1, . . . , k, while “x ¦ 0”(or “x § 0”) means that there exists l and

l1 in t1, . . . , ku such that xl ¥ 0 and xl1   0 or xl ¡ 0 and xl1 ¤ 0. Convergence almost

surely is symbolized by “a.s.”, “
pÑ” stands for convergence in probability, while “

dÑ” means

convergence in distribution. The usual stochastic orders of magnitude are denoted by Opp.q,
opp.q. Pr�s denotes the relevant probability measure and Er�s is the expectation operator

under Pr�s. P�r�s is the bootstrap analogue of Pr�s, and similarly for E�r�s. Iq stands for the

identity matrix of order q, and for any q � q matrix A, A� is the generalized inverse of A.

The notation diagpAq is a q� q diagonal matrix with diagonal elements the pl, lqth elements

of A. }U} denotes the usual Euclidian or Frobenius norm for a matrix U . For any set C ,

BC is the boundary of C and pBC qε its ε-neighborhood. Finally, sup
ωPΩ

|fpωq| is the supremum

norm on the space of bounded continuous real functions, with topological space Ω.

The remainder of the paper is organised as follows. Section 2 defines the relevant concepts

and introduces the dominance criterion. Section 3 formulates the hypotheses tested and

presents the basic notations and assumptions used. Section 4 presents the derivation of the

statistics and the asymptotic theory developed. Section 5 illustrates the performance of

the tests via Monte Carlo experiments. Section 6 provides an empirical illustration of our

theoretical results, and Section 7 concludes. Proofs are presented in the appendix.
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2 Preliminaries

Before introducing the concept of stochastic dominance in networks (Section 2.2) and for-

malizing the testing problem of interest (Section 3), we define the basic terminologies and

notations used throughout the study.

2.1 Networks

Let N � t1, 2, . . . , nu denote a finite set of agents, and GpNq be the set of networks on N.

We define a network g over N as a pair of nodes and edges describing relationships (or links)

between agents 1, 2, . . . , n. A network can be represented by a graph whose n� n adjacency

matrix has generic element gii1 satisfying gii1 � 1 if there is a directed link from agent i

to i1, and gii1 � 0 otherwise. By convention, we set gii � 0 for all i. The neighborhood

of agent i is the set of agents with whom i has a directed link in network g, i.e., the set

Nipgq � ti1 P N |gii1 � 1u. We refer to the number of agent i’s neighbors, dg�i � cardrNipgqs,
as the degree of agent i.8

The degree distribution of network g is a vector Pg � rp̂g�0, . . . , p̂g�k, . . . , p̂g�pn�1qs1, where

p̂g�k � cardrti : dg�i � kus{n is the proportion of nodes with degree k; thus p̂g�k ¥ 0 for

each k P Rn,
°
kPRn

p̂g�k � 1, and Rn � t0, 1, . . . , n � 1u is the range of Pg. The empirical

cumulative distribution function (cdf) of network g is the function Fg : Rn Ñ r0, 1s such

that Fgpkq �
°k

0 p̂g�l for all k P Rn.

Example 1. Figure 1 illustrates three networks with n � 5 agents: a “circle” network

(Network g), a “directed star” network (Network g1), and a “complete” network (Network

g2).

8Our definition of a neighborhood considers the out-degree of agent i, i.e. the number of links which

originate from agent i. However, it can also be defined using the in-degree of agent i, in which case,

Nipgq � ti1 P N |gi1i � 1u. The choice of the definition depends mainly upon the application considered. For

undirected networks, gii1 � gi1i and both definitions coincide.
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Figure 1: Example of networks
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(c) Network g2

The characteristics of each network j P tg, g1, g2u, as per the above terminologies and

definitions– neighborhood : N pjq, degree of agent: dj�i, degree distribution: Pj, and empirical

cdf : Fj –are summarized in Table 1.

Table 1: Characteristics of network j P tg, g1, g2u

characteristics Ó Network j Ñ g g1 g2

N1pjq t2, 5u t2, 3, 4, 5u t2, 3, 4, 5u
N2pjq t1, 3u ∅ t1, 3, 4, 5u
N3pjq t2, 4u ∅ t1, 2, 4, 5u
N4pjq t3, 5u ∅ t1, 2, 3, 5u
N5pjq t1, 4u ∅ t1, 2, 3, 4u
dj�1 2 4 4

dj�2 2 0 4

dj�3 2 0 4

dj�4 2 0 4

dj�5 2 0 4

Pj p0, 0, 1, 0, 0q1 p4{5, 0, 0, 0, 1{5q1 p0, 0, 0, 0, 1q1

Fj p0, 0, 1, 1, 1q1 p4{5, 4{5, 4{5, 4{5, 1q1 p0, 0, 0, 0, 1q1
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2.2 Stochastic Dominance in Networks

Consider the setup described in Section 2.1, and let g and g1 denote two networks in GpNq
with empirical cdfs Fg and Fg1 , respectively. The first- and second-order9 stochastic domi-

nance between g and g1 are characterized as follows.

Definition 1. piq Network g first-order stochastically dominates network g1, which we

write g ¡1 g
1, if Fgpkq ¤ Fg1pkq @ k P Rn, with strict inequality for some k.

piiq Network g second-order stochastically dominates g1, which we write g ¡2 g1, if°k
i�0 Fgpiq ¤

°k
i�0 Fg1piq @ k P Rn, with strict inequality for some k.

It is straightforward to see from the above characterizations that first-order stochastic

dominance implies second-order stochastic dominance, but not the other way around. We

now illustrate the two concepts from the example of Section 2.1.

Example 1 (continued). Again, consider the three networks g, g1, and g2 of Example 1.

From Table 2 below, the pairwise comparisons between the cumulative distributions of these

networks show that g2 first-order stochastically dominates both g and g1. Therefore, g2 also

second-order stochastically dominates both g and g1. However, as Fgp1q   Fg1p1q and Fgp2q ¡
Fg1p2q, there exists no first-order stochastic dominance between g and g1. Nevertheless, g

second-order stochastically dominates g1. This reflects the fact that network g has an average

degree at least as high as network g1 but a lower dispersion in agents’ degrees.

9The characterization of stochastic dominance can easily be extended to higher-order, but for simplicity

we mainly focus on the first- and second-order dominance for the remainder of the paper.
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Table 2: Stochastic dominance between networks g, g1 and g2 of Example 1

k 0 1 2 3 4

p̂g�k 0 0 1 0 0

Fgpkq 0 0 1 1 1°k
i�0 Fgpiq 0 0 1 2 3

p̂g1�k 0.8 0 0 0 0.2

Fg1pkq 0.8 0.8 0.8 0.8 1°k
i�0 Fg1piq 0.8 1.6 2.4 3.2 4.2

p̂g2�k 0 0 0 0 1

Fg2pkq 0 0 0 0 1°k
i�0 Fg2piq 0 0 0 0 1

We now wish to formulate hypotheses for assessing stochastic dominance in social net-

works from observed real world data.

3 Stochastic Dominance Hypothesis and Assumptions

We first formulate the problem of testing stochastic dominance hypotheses in Section 3.1.

Section 3.2 presents the basic notations and assumptions that are used in the paper.

3.1 Hypothesis Formulation

Let g and g1 be two networks observed on the same population of n agents, and let Fj

denote the empirical cdf associated with the degree distribution Pj of network j P tg, g1u.
Finally, let N � t1, 2, . . .u be the set of natural integers. Given m P N, we are interested in

assessing which network mth-order stochastically dominates the other. From Definition 1,

this problem can be formulated as a problem of testing the mth-order stochastic dominance

between the cdfs Fg and Fg1 , i.e.,

H0m : Fg
d� Fg1 versus H1m : Fg ¡m Fg1 ^ H2m : Fg

d

�� Fg1 , (1)
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where “¡m” denotes the mth-order stochastic dominance operator, “
d�” and “

d

��” symbolize

equality and difference in distribution respectively. As can be seen clearly from (1), H0m

tests equality between Fg and Fg1 against: (i) mth-order stochastic dominance (H1m), and

(ii) no mth-order dominance (H2m). For example when m � 2, H02 tests the equality

between Fg and Fg1 against both second-order stochastic dominance (H12) and no second-

order dominance (H22). Several statistical procedures exist to assess stochastic dominance

hypotheses between two distributions, but to the best of our knowledge, this study is the

first to focus on extending these procedures to network theory.

In order to derive a testable formulation of problem (1) from the observed data, as well

as test statistics for assessing it, it is useful to first introduce the following notations and

assumptions.

3.2 Basic Notations and Assumptions

Let tpdg�i, dg1�iquni�1 be a sample of n observations drawn from the joint distribution of the

degree of agents in networks g and g1. Let Fg and Fg1 denote the empirical cdfs of networks

g and g1 respectively, constructed as in Section 2.1. To build Pearson-type statistics for

assessing H0m in (1), we must first partition the range (support) of the degree distributions

of networks g and g1 into classes (or class intervals). To do this, we adapt the methodology

in Anderson (1996) to the context of social networks.

Let pdiq2ni�1 be the pooled sample of 2n observations obtained by stacking the two sub-

samples pdg�iqni�1 and pdg1�iqni�1, and let Supp(d) � Rn denote the support of the distribution

of pdiq2ni�1 , where Rn � t0, 1, 2, . . . , n� 1u is the common range of the degree distributions of

networks g and g1. Note that Supp(d) need not be strictly equal to Rn. This is the case for

example if max
i,jPtg,g1u

tdj�iuni�1   n � 1. For some fixed k P N, let P
pkq

n pI1, . . . , Ikq � P
pkq

n pIq :�
tIlukl�1 denote a finite partition of Supp(d) into k disjoint sets, i.e.

Supp(d) �
¤

1¤l¤k
Il : Il �� ∅, Il X Il̃ � ∅ @ l � l̃, (2)

and define a collection of such partitions by

P �
!
P

pkq

n pIq : I � tIlukl�1 satisfies (2)
)
. (3)

10



As Supp(d) is a discrete finite set, the collection P contains a finite number of elements

(or partitions) for a given k. Until now, we have implicitly assumed that the number k of

subsets and the division points between subsets (subsets’ cardinality) in (2) are available to

the investigator. In practice, one has to choose k as well as the division points between the

k resulting subsets, and it is well documented that these choices have an influence on the

properties (size and power) of Pearson-type tests. For samples generated from continuous

distributions, we have Supp(d) � R and Il, l � 1, 2, . . . , k are compact intervals in (2).

In this case, there is a number of seminal papers which provide rules to select k and the

lengths of subsequent intervals such that the resulting Pearson-type test is unbiased. For

example, Anderson (1996) suggests that power can be gained by locating partition points at

fractiles where it is thought that the two distributions may intersect. Since this information

is unknown, the standard advice by Mann and Wald (1942),10 Gumbel (1943), and Williams

(1950), that power is gained by equalizing cell probabilities under the null whilst maintaining

an expected cell frequency of at least 5 is usually used in applied work.

The main difficulty in extending Mann and Wald (1942) and Williams (1950) rules of

thumb to the context of networks resides in the finite and discrete nature of the range of a

network’s degree distribution. For example, Figure 2 shows the degree distributions of two

commonly used networks: the Poisson random graph and the Scale-free network. While in

theory the range of both distributions is the entire positive integer set N, we see that both

distributions are concentrated between: 1–20 (for the Poisson random graph), and 1–9 (the

Scale-free network). Suppose we have a joint sample of n � 500 realizations of networks g

and g1 drawn from a population that follows one of these distributions. For a test at the

α � 5% nominal level (c � 1.64), Mann and Wald’s (1942) and Williams’s (1950) optimal

10Mann and Wald (1942) show that the optimal choice of the number of classes is k :� I nt

�
4 5

b
2pn�1q2

c2

�
,

where n is the sample size, I ntrxs is the integer part of any real x, and c is determined so that

2?
2π

³8
c
e�x

2{2dx is equal to the size of the critical region under H02. One criticism of Mann and Wald’s

(1942) method is that it generates an unnecessarily large number of classes; see Schorr (1974). Williams

(1950) shows that halving this number does not substantially decrease the power of Pearson-type tests.

Although these rules of thumb are reasonable to follow, it is worth noting that they do not imply that

the resulting Pearson-type test is necessarily uniformly powerful against all alternatives; for example, see

Cochran (1952).
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rules of thumb give k
MW

� 45 and k
W
� 23 respectively. These choices increase to k

MW
� 59

and k
W
� 30 for a population of n � 1, 000 agents. However, Figure 2 shows clearly that

even a choice of k � k
W
� 23 in (2) does not make it possible to equalize cell probabilities

under the null whilst maintaining an expected cell frequency of at least 5. Even though

this criterion may give a good approximation for Poisson random graphs in some instances

(for example when λ is large enough), this is likely not the case for Scale-free networks.

Therefore, adjustments are needed to adapt Mann and Wald’s (1942) and Williams’s (1950)

rules of thumb to the network context. For this purpose, define kmax � maxSupppdq. Then,

a practical and simple rule of thumb could be to choose k ¤ minrk
W
,max supppdqs such that

Williams (1950) rule of thumb is close to being fulfilled. This can be achieved through a

careful analysis of the empirical histogram of the degree distributions such as in Figure 2.

For example, if the realizations of networks g and g1 are drawn from a Poisson population

(Figure 2-(a)), both choices: (i) k � 4 and I1 � t1, . . . , 7u, I2 � t8, 9u, I3 � t10, 11u, I4 �
t12, . . . , 20u, and (ii) k � 4 and I1 � t1, . . . , 9u, I2 � t10u, I3 � t11u, I4 � t12, . . . , 20u, are

acceptable. However, the former is closer to the recommendation to equalize cell probabilities

than the latter.

Figure 2: The distribution of degrees for Poisson and Scale-free networks

(a) Poisson with parameter λ � 10 (b) Scale-free with parameter γ � 2.5

To formally address the threshold of an expected cell frequency of at least 5, we first

12



introduce the following notations and definitions. Let p
j�il
, j P tg, g1u be the probability that

dj�i falls in Il, and p̂
j�l

denote the proportion of observations in pdj�iqni�1 which fall in Il, i.e.

p
j�il
� Ppdj�i P Ilq, p̂

j�l
� 1

n

ņ

i�1

1pdj�i P Ilq. (4)

If tpdg�i, dg1�iquni�1 is i.i.d. across i, for given j P tg, g1u and l P t1, . . . , ku , the probabilities

p
j�il

are the same for all i, i.e., p
j�il

� p
j�l

for all i and p̂
j�l

is a consistent estimator of p
j�l
.

Then, the expected numbers in cell l for network j is given by

nj�l :� np̂
j�l
�

ņ

i�1

1pdj�i P Ilq. (5)

To insure a valid approximation of the multinomial distribution to a multivariate normal

distribution, (2) must also guarantee that the minimum of the nj�l’s for all j P tg, g1u and

l � 1, . . . , k is at least 5. This threshold is usually imposed and the absence of a theory

to justify its validity has raised some concerns in several seminal papers; e.g., Cochran

(1952), Lewis and Burke (1949), and Edwards (1950). Yates (1934) provides a correction

for continuity that adjusts the formula for a Pearson-type statistic when this threshold is

violated. In this paper, we do not address the issues related to the choice of the minimum

expected number in cells. Rather, we consider the collection of all partitions P
pkq

n pIq for

which this requirement is satisfied, and we wish to provide tests of stochastic dominance

that control the size uniformly over this collection of partitions.

To be more specific, consider the partitions P
pkq

n pIq in (2) such that np̂
j�l
¡ 5 for all

j P tg, g1u and l P t1, . . . , ku . Let P
A

be a collection of such partitions, i.e.

P
A
�
!
P

pkq

n pIq P P : I � tIlukl�1 satisfies np̂
j�l
¡ 5; for all j P tg, g1u and l � 1, . . . , k

)
. (6)

For the remainder of the paper, we shall refer to P
A

as a collection of admissible partitions.

Note that np̂
j�l
¡ 5 is the only restriction on the structure of P

pkq

n pIq in (2), therefore there

are many admissible partitions P
pkq

n pIq that can be formed from the observed joint data

tpdg�i, dg1�iquni�1. As P is finite, P
A

is also a finite set of partitions. In such a context,

proving the uniform control of type-I error over P
A

of the statistics considered for assessing

H0m in (1) is important.
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Now, let

uj�i � r1pdj�i P I1q, . . . , 1pdj�i P Ikqs1 , p
j�i
� Epuj�iq � rp

j�i1
, . . . , p

j�ik
s1, (7)

and p̂
j

:� rp̂
j�1
, . . . , p̂

j�k
s1 � 1

n

ņ

i�1

uj�i, j P tg, g1u, (8)

where p
j�il

and p̂
j�l

are given in (4). Each estimated vector of probabilities p̂
j

in (8) is a

sample average of the realizations uj�i from a k-dimensional multinomial random variable

with vector of parameters p
j�i
� rp

j�i1
, . . . , p

j�ik
s1. Let pΣj be an estimator of the covariance

matrix of uj�i given by

pΣj �

�
�������

p̂
j�1
p1� p̂

j�1
q �p̂

j�1
p̂
j�2

. . . �p̂
j�1
p̂
j�k

�p̂
j�2
p̂
j�1

p̂
j�2
p1� p̂

j�2
q . . .

...
...

... . . .
...

�p̂
j�k
p̂
j�1

�p̂
j�k
p̂
j�2

. . . p̂
j�k
p1� p̂

j�k
q

�
������

: j P tg, g1u, (9)

and similarly, define

p
gg1�i,ll̃

� Ppdg�i P Il, dg1�i P Il̃q, p̂
gg1�ll̃

� 1

n

ņ

i�1

1pdg�i P Ilq1pdg1�i P Il̃q, (10)

and let pΣgg1 be an estimator of the covariance matrix of the p2kq-dimensional vector of joint

variables pu1g�i : u1g1�iq1 given by

pΣgg1 �

�
�������

p̂
gg1�11

� p̂g�1 p̂g1�1 p̂
gg1�12

� p̂g�1 p̂g1�2 . . . p̂
gg1�1k

� p̂g�1 p̂g1�k

p̂
gg1�21

� p̂g�2 p̂g1�1 p̂
gg1�22

� p̂g�2 p̂g1�2 . . .
...

...
... . . .

...

p̂
gg1�k1

� p̂
g�k
p̂
g1�1

p̂
gg1�k2

� p̂
g�k
p̂
g1�2

. . . p̂
gg1�kk

� p̂
g�k
p̂
g1�k

�
������
. (11)

Also, let v̂m � T
mpp̂g � p̂

g1
q be the scaled vector of contrasts, where T is a k � k lower

triangular matrix of ones, and define

pΩm � T
mrpΣg � pΣg1 � ppΣgg1 � pΣ1

gg1qsT1m :� rpωm�ll̃s1¤l,l̃¤k . (12)

Note that by construction, each of the k � k matrices pΣj, j P tg, g1u in (9), pΣgg1 in (11), and

pΣg � pΣg1 � pΣgg1 � pΣ1
gg1 in (12) have rank k � 1. Therefore, pΩm in (12) also has rank k � 1.
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The notation pΩ�

m thus refers to the generalized inverse of pΩm hereinafter. From Dhrymes

(1978, Proposition 3.5), there exists a diagonal matrix pDk�1 whose diagonal elements are

the nonzero eigenvalues of pΩm (in decreasing order of magnitude), and a k � pk � 1q matrix

pPk�1 whose columns are the (orthogonal) eigenvectors corresponding to the nonzero roots of

pΩm, such that

pΩ�

m � pPk�1
pD�1
k�1

pP 1
k�1. (13)

We now make the following assumption on the joint sample tpdg�i, dg1�iquni�1 .

Assumption 1. Dn :� tpdg�i, dg1�iquni�1 is a i.i.d. random sample across i drawn from the

joint distribution of the degrees of networks g and g1.

In the above assumption, possible dependence between the distribution of the degrees

of the two networks is allowed. The i.i.d. sampling across the rows of the joint sample Dn

preserves this dependence. In the case where g and g1 are independent, one can draw two

independent i.i.d. samples with different sizes: one from the population of network g, say

pdg�iqngi�1 , and the second from the population of network g1, say pdg1�iqng1i�1 . However, this

case excludes interesting situations where the populations of the two networks overlap, as is

usually the case in most empirical applications of social networks. In such contexts, while

it is reasonable to assume that pdg�i, dg1�iq is independent of pdg�i1 , dg1�i1q for i � i1, it is likely

that dg�i and dg1�i will be correlated.

4 Test Statistics and asymptotic theory

We wish to first discuss how problem (1) can be recast in the more familiar language of

hypotheses specified on vectors of contrast. Under the i.i.d. sampling across observations in

Assumption 1, we have p
j�il
� p

j�l
in (4) and p

j�i
� p

j
in (7) for all j P tg, g1u, i P t1, . . . , nu and

l P t1, . . . , ku. Therefore, it is straightforward to show that problem (1) can be equivalently

formulated11 as:

H0m : vm � 0 versus H1m : vm ¤ 0 ^ H2m : vm ¦ 0 and vm § 0 (14)

11See Anderson (1996) for a similar formulation.
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for any m P N, where vm � T
mppg � p

g1
q and T is given in (12). Since vm is a k � 1 scaled

vector of contrasts, testing H0m in (14) involves k multiple comparison procedures and there

is a risk of size control related to a simultaneous testing of the significance of pairwise con-

trasts. To avoid size distortions, Richmond (1982) proposes to use the studentized maximum

modulus (SMM) type statistic whose distribution is tabulated by Stoline and Ury (1979),

and the statistic is employed by Beach and Richmond (1985) to construct confidence regions

for Lorenz curve ordinates. In this paper, we combine the studentized maximum modulus

statistic with an adjusted version of Pearson’s (1900) statistic for assessing problem (14).

Anderson (1996) employed a similar method in the context of income distributions but his

methodology relies on the assumption that pdg�iqni�1 and pdg1�iqni�1 are independent, while ours

is free of such a restriction.

To be more specific, suppose that Assumption 1 is satisfied. Hence, we have p̂g
pÑ pg

and p̂
g1

pÑ p
g1
, so that the estimated contrast v̂m � T

mpp̂g � p̂
g1
q pÑ vm � T

mppg � p
g1
q.

If further H0m holds, vm � 0 and v̂m will be close to zero for a large enough sample size.

However, under H1m or H2m, neither vm nor v̂m will be close to zero. Therefore, one can

detect whether H0m is violated by looking at how far the estimated contrast v̂m is from zero.

Since the estimated contrast v̂m will not be exactly zero under H0m due to sampling error,

a conventional way to proceed is to construct the test statistic from the distribution of v̂m.

This approach is extensively discussed in Hausman (1978) and widely used in econometrics,

especially in specification testing. Before we move on to the derivation of the statistics for

H0m, it is useful to establish the following convergence property for the estimated contrast

of probabilities p̂g � p̂
g1
, as well as its scaled variant v̂m � T

mpp̂g � p̂
g1
q.

Lemma 1. Suppose that Assumption 1 holds. For any admissible partition P
pkq

n pIq P P
A
,

we have:

?
nrpp̂g � p̂

g1
q � ppg � p

g1
qs dÑ N

�
0, Σg � Σg1 � Σgg1 � Σ1

gg1

	
, (15)

and
?
npv̂m � vmq dÑ Np0, Ωmq, (16)

where Σj � p lim
nÑ8

ppΣjq, j P tg, g1u, Σgg1 � p lim
nÑ8

ppΣgg1q, Ωm � T
mpΣg � Σg1 � Σgg1 � Σ1

gg1qT1m ,

pΣj and pΣgg1 are defined in p9q - p11q.
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Lemma 1 follows by the multivariate central limit theorem (MVCLT) property and the

proof is presented in the appendix. It states that the estimated contrast (p̂g � p̂
g1

) and

its scaled variant v̂m are root-n consistent and asymptotically normal. Anderson (1996)

assumes that Σgg1 � 0, so we have Ωm � T
mpΣg � Σg1qT1m in his setup. In the context

of correlated samples (Σgg1 � 0), a correction to Anderson’s (1996) statistics is necessary

to avoid size distortions, and the term �pΣgg1 � Σ1
gg1q on the rhs of (16) is the adjustment

needed.12 In the appendix (see Lemma 4), we show that Ωm can be consistently estimated

by pΩm � T
mppΣg � pΣg1 � pΣgg1 � pΣ1

gg1qT1m , where pΣj, j P tg, g1u and pΣgg1 are given in (9) - (11).

Observe that pΣgg1 is built from the contingency table obtained from the partition P
pkq

n pIq
(thus from the distribution of the joint sample), while pΣj only exploits the information from

the marginal distribution of the sample of network j P tg, g1u. The main conclusion here

is that even though the cdfs (hence the pdfs) of the two networks are equal under H0m,

constructing the Pearson- or SMM-type statistics solely based on them, as is usually done in

the literature on inequality and poverty measures, is not always the best way to go because

it does not account for the correlation structure between networks.

We now focus on the derivation of the test statistics for H0m.

4.1 Test Statistics and Decision Rule

Following Anderson (1996), we consider two statistics based on the estimated vector of

contrasts v̂m for assessing H0m:

WmpPpkq

n pIqq � nv̂1mpΩ�

mv̂m � nv̂1m pPk�1
pD�1
k�1

pP 1
k�1v̂m,

SmpPpkq

n pIqq � max
1¤l¤k�1

�
|?n pZml|

	
, (17)

where pZml is the lth component of pD�1{2
k�1

pP 1
k�1v̂m,

pDk�1 and pPk�1 are given in (13). WmpPpkq

n pIqq
in (17) is a Pearson-type statistic expressed as a quadratic form in v̂m. It differs from that

in Anderson (1996) not only through the correction of the covariance matrix pΩm, but also

its direct dependence on P
pkq

n pIq. The dependence on P
pkq

n pIq underscores the importance of

12Our investigation through a Monte Carlo experiment shows that failing to adjust Anderson’s (1996)

statistics yields overly size distorted tests when the two samples pdg�iqni�1 and pdg1�iqni�1 are correlated. In

order to shorten the exposition, this exercise is omitted from this paper but it is available upon request.
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controlling the size of the resulting test uniformly over the collection of admissible partitions

P
A
. Uniformity over P

A
is crucial for the asymptotic results to give a good approximation

of the empirical size of the tests to the nominal level. SmpPpkq

n pIqq is a generalization of the

SMM statistic in Stoline and Ury (1979). Besides its dependence on P
pkq

n pIq, the expression

of SmpPpkq

n pIqq in (17) is conceptually different from those in Stoline and Ury (1979), Beach

and Richmond (1985), and Anderson (1996). For example, Beach and Richmond (1985)

and Anderson (1996) defined these statistics as max
1¤l¤k

�pω�1{2
m�ll |

?
nv̂ml|

	
, where v̂ml is the lth

component of v̂m and pωm�ll is the pl, lqth element of pΩm. Since v̂ml and pωm�ll are not inde-

pendent by construction,13 max
1¤l¤k

�pω�1{2
m�ll |

?
nv̂ml|

	
does not follow a SMM distribution under

H0m. By contrast, the expression of SmpPpkq

n pIqq in (17) converges to a SMM distribution

with parameter k � 1 and infinite degrees of freedom under H0m and Assumption 1 (see

Lemma 2). This is because we have adjusted this statistic as the maximum of the absolute

values of k � 1 non-redundant linear combinations of the components of
?
nv̂m, where the

weights are the elements of the pk � 1q � k matrix pD�1{2
k�1

pP 1
k�1, while max

1¤l¤k

�pω�1{2
m�ll |

?
nv̂ml|

	
is obtained as the maximum of the absolute value of the k component of the scaled vec-

tor rdiagp pPk�1
pD�1
k�1

pP 1
k�1qs1{2

?
nv̂m. Moreover, one of the fundamental differences between

the two statistics in (17) is that WmpPpkq

n pIqq does not depend on either T or m (order of

dominance tested),14 while SmpPpkq

n pIqq depends on both.

Since v̂m
pÑ vm under Assumption 1, it is clear from (14) that Fg ¡m Fg1 if all components

of v̂m are less or equal to zero, with a strict inequality at least for one. Hence, the statistic

WmpPpkq

n pIqq, which is a quadratic form in v̂m, if not combined with SmpPpkq

n pIqq, tests the

equality between the cumulative distributions Fg and Fg1 and a rejection does not necessary

entail stochastic dominance. Meanwhile, a rejection using the statistic SmpPpkq

n pIqq implies

stochastic dominance. Furthermore, the test with SmpPpkq

n pIqq asymptotically controls the

“familywise” rate of type I error in multiple comparison procedures (e.g., Richmond (1982)

13The upper α-points of the distribution of the SMM statistic, max
1¤l¤k

�pω�1{2
m�ll |

?
nv̂ml|

	
, in Stoline and

Ury (1979, Tables 1-3) are provided under the assumption that v̂ml is independent of pωm�ll. However, the

partitioning into classes does not preserve this independence assumption.
14As T is invertible, Tm is also invertible for all m P N so that v̂1mpΩ�

mv̂m � v̂1Tm1

T�m1 pΩ�

T�mTmv̂ �
v̂1pΩ�

v̂, i.e., WmpPpkq

n pIqq does not depend on either T nor m.
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and Beach and Richmond (1985)). A combination of the two statistics informs us on whether

‘stochastic dominance’ holds or not, once equality between the two distributions is rejected.

Formally, as long as the two statistics are combined, one of the following three levels of

decision can be reached given any admissible partition P
pkq

n pIq P P
A

:

1. if WmpPpkq

n pIqq ¤ ckpαq, retain H0m;

2. if WmpPpkq

n pIqq ¡ ckpαq and SmpPpkq

n pIqq ¡ skpαq, retain H1m;

3. if WmpPpkq

n pIqq ¡ ckpαq and SmpPpkq

n pIqq ¤ skpαq, retain H2m,

where for some α P p0, 1q, the cut-off points ckpαq and skpαq are determined such that

PrWmpPpkq

n pIqq ¡ ckpαqs Ñ α and PrSmpPpkq

n pIqq ¡ skpαqs Ñ α under H0m, as n Ñ 8
(at least). Tests based on the two statistics are not equally powerful against both alterna-

tives H1m and H2m, especially in small samples. Indeed, in the case where one cumulative

distribution is completely below the other, both tests have good power. However, if the

cumulative distributions cross, the test with WmpPpkq

n pIqq is more powerful than those with

SmpPpkq

n pIqq. This is because WmpPpkq

n pIqq is a quadratic form in
?
n pZm � pD�1{2

k�1
pP 1
k�1

?
nv̂m

while SmpPpkq

n pIqq is the absolute value of the maximal component of
?
n pZm P Rk�1. Fur-

thermore, from the functional forms of WmpPpkq

n pIqq and SmpPpkq

n pIqq in (17), a non-rejection

by the test with WmpPpkq

n pIqq entails a non-rejection of those with SmpPpkq

n pIqq, as long as

the tests are performed at the same nominal level. Thus, retaining H0m when the test with

WmpPpkq

n pIqq fails to reject it asymptotically controls the “familywise” rate of type I error.

Hence, Bonferroni-type size correction for multiple comparison hypotheses is not warranted

in large samples. To enhance the small-sample performance of the test, we propose a boot-

strap method that is easy to implement from the observed data (see Section 4.3). But before

we move on to the bootstrap results, it is informative to study the asymptotic properties of

the standard tests first.

4.2 Asymptotic Properties of the tests

In this section, we characterize the large-sample properties (size and power) of the above tests

of stochastic dominance. To do this, we first study the asymptotic behavior of WmpPpkq

n pIqq
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and SmpPpkq

n pIqq under both the null hypothesis (H0m) and the alternative hypotheses (H1m

and H2m). Lemma 2 presents the results.

Lemma 2. Let P
pkq

n pIq be any admissible partition in P
A
. Under Assumption 1, the following

convergence results hold as n goes to infinity:

paq if H0m is satisfied, we have

WmpPpkq

n pIqq dÑ χ2pk � 1q, SmpPpkq

n pIqq dÑ max
1¤l¤k�1

|Zl| � SMMpk � 1,8q,

pbq if H1m or H2m is satisfied, we have

WmpPpkq

n pIqq pÑ �8, SmpPpkq

n pIqq pÑ �8,

where Zl
i.i.d.� Np0, 1q for all l � 1, 2, . . . k�1 and SMMpk�1,8q is the studentized maximum

modulus distribution with parameter k � 1 and infinite degrees of freedom.

Lemma 2 - (a) shows that for any admissible partition P
pkq

n pIq in P
A
, the asymptotic distri-

butions under H0m of both statistics are nuisance parameters free. The statistic WmpPpkq

n pIqq
has the standard χ2 asymptotic distribution, while that of SmpPpkq

n pIqq is non-standard but

its critical values are tabulated in Stoline and Ury (1979). Lemma 2 - (b) indicates that the

statistics diverge under H1m or H2m for any admissible partition P
pkq

n pIq P P
A
. We can now

establish the following results on the uniform control of the size over P
A

as well as test

consistency for any partition P
pkq

n pIq P P
A
.

Theorem 1. Suppose that Assumption 1 is satisfied and let α P p0, 1q. As the sample size n

goes to infinity, the following convergence results holds:

paq if H0m is satisfied, then we have

lim sup
nÑ8

sup
P
A

PrWmpPpkq

n pIqq ¡ χ2
k�1
pαqs � α, lim sup

nÑ8
sup
P
A

PrSmpPpkq

n pIqq ¡ z
k�1
pαqs � α;

pbq if H1m or H2m is satisfied, then we have

lim
nÑ8

PrWmpPpkq

n pIqq ¡ χ2
k�1
pαqs � 1, lim

nÑ8
PrSmpPpkq

n pIqq ¡ z
k�1
pαqs � 1 @ P

pkq

n pIq P P
A
,
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where χ2
k�1
pαq and z

k�1
pαq are the p1 � αqth quantiles of a χ2pk � 1q-distributed and a

SMMpk � 1,8q-distributed random variables, respectively.

Theorem 1-(a) shows that tests based on both WmpPpkq

n pIqq and SmpPpkq

n pIqq have correct

size uniformly over P
A

. Therefore, the asymptotic χ2 and SMM critical values provide good

approximations of the empirical critical values of WmpPpkq

n pIqq and SmpPpkq

n pIqq if n is large.

Theorem 1-(b) indicates that both tests are consistent under H1m or H2m for any admissible

partition P
pkq

n pIq P P
A
. However, the finite-sample size and power of the tests depend on the

choice of P
pkq

n pIq P P
A
, and may not be as good as their asymptotic properties. To address

this issue, we propose a bootstrap method to enhance the finite-sample properties of the

tests. Section 4.3 presents the details.

4.3 Bootstrap Tests

In this section, we study the validity of the bootstrap for the statistics WmpPpkq

n pIqq and

SmpPpkq

n pIqq. The usual intuition for the bootstrap requires that the empirical distribution,

from which the bootstrap sample is drawn, be close to the distribution of the data under the

null hypothesis. In our context, the empirical distribution used in the bootstrap sampling is

the empirical distribution of the joint sample Dn � tpdg�i, dg1�iquni�1 . To be more specific, the

bootstrap pseudo-samples and statistics, as well as the decision rule are obtained following

the above steps.

1. From the observed joint sample Dn � tpdg�i, dg1�iquni�1 , obtain a partition P
pkq

n pIq P P
A

and compute the realizations of the statistics WmpPpkq

n pIqq and SmpPpkq

n pIqq.

2. For each bootstrap sample b � 1, . . . , Mb, generate the data D�
n �  �

d�g�i, d
�
g1�i
�(n

i�1
,

where pd�g�i, d�g1�iq are drawn independently from the empirical distribution of the joint

sample Dn. From the re-sampled data and the partition P
pkq

n pIq, compute the realiza-

tions of the bootstrap statistics W�pbq
m pPpkq

n pIqq, S�pbq
m pPpkq

n pIqq : b � 1, . . . , Mb :

W�pbq
m pPpkq

n pIqq � nṽ�
1

m
pΩ��
m ṽ�m, S�pbq

m pPpkq

n pIqq � max
1¤l¤k�1

�
|?n rZ�

ml|
	
, (18)

where ṽ�m � v̂�m � v̂m, rZ�
ml � pZ�

ml � pZml; and pΩ��
m , v̂�m, pZ�

ml are the bootstrap analogues

of pΩ�

m, v̂m,
pZml, respectively.
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3. The decision rule of the bootstrap test is as follows:

(a) if 1
Mb

Mb°
b�1

1
�
W�pbq

m pP
pkq

n pIqq ¡ WmpP
pkq

n pIqq
�
¥ α where 1rCs � 1 if condition C holds

and 1rCs � 0 otherwise, retain H0m;

(b) if 1
Mb

Mb°
b�1

1
�
W�pbq

m pP
pkq

n pIqq ¡ WmpP
pkq

n pIqq
�
  α^ 1

Mb

Mb°
b�1

1
�
S�pbqm pP

pkq

n pIqq ¡ SmpP
pkq

n pIqq
�
 

α, retain H1m;

(c) if 1
Mb

Mb°
b�1

1
�
W�pbq

m pP
pkq

n pIqq ¡ WmpP
pkq

n pIqq
�
  α^ 1

Mb

Mb°
b�1

1
�
S�pbqm pP

pkq

n pIqq ¡ SmpP
pkq

n pIqq
�
¥

α, retain H2m.

The bootstrap statistics in (18) are expressed in terms of ṽ�m � v̂�m � v̂m, rather than

v̂�m. This re-centering is important for the validity of the bootstrap as the expectation of v̂�m

under the bootstrap data generating process is v̂m, which is not necessarily zero under H0m.

The importance of re-centering has extensively been discussed in the bootstrap literature

(e.g., Hall and Horowitz (1996), Hahn (1996), Andrews (2002), Brown and Newey (2002),

Inoue and Shintani (2006)).

In the remainder of the paper, the probability under the empirical distribution function

of the joint sample D�
n conditional on the observed data Dn is denoted by P�r�s, and E�r�s

is its corresponding expectation operator. Lemma 3 characterises the asymptotic behavior

of the bootstrap statistics of stochastic dominance.

Lemma 3. Let P
pkq

n pIq be any admissible partition in P
A
. Under Assumption 1, the following

convergence results hold as n goes to infinity:

paq if H0m is satisfied, then we have

W�
mpP

pkq

n pIqq | Dn
dÑ χ2pk � 1q a.s., S�

mpP
pkq

n pIqq | Dn
dÑ max

1¤l¤k�1
|Zl| � SMMpk � 1,8q a.s.,

pbq if H1m or H2m is satisfied, then we have

W�
mpP

pkq

n pIqq | Dn
pÑ �8 a.s. S�

mpP
pkq

n pIqq | Dn
pÑ �8 a.s.,

where Zl and SMMpk � 1,8q are defined in Lemma 2.
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Lemma 3 shows that the bootstrap provides a first-order approximation of the null lim-

iting distributions of the statistics W�
mpPpkq

n pIqq and S�
mpPpkq

n pIqq, and is further consistent

under the alternative hypotheses H1m and H2m. These results hold irrespective of which par-

tition P
pkq

n pIq P P
A

is used in the computation of the statistics. We can prove the following

theorem on the consistency of the bootstrap tests.

Theorem 2. Let P
pkq

n pIq be any admissible partition in P
A
, and suppose that Assumption 1

is satisfied. Then, the following convergence results hold as n goes to infinity, whether H0m

holds or not:

sup
wPR

���P��W�
mpP

pkq

n pIqq ¤ w
�� P

�
WmpPpkq

n pIqq ¤ w
���� Ñ 0 in probability P,

sup
zPR

���P��S�
mpP

pkq

n pIqq ¤ z
�� PpSm

�
P

pkq

n pIqq ¤ z
���� Ñ 0 in probability P.

We now study the finite-sample performance (size and power) of both the standard and

bootstrap tests of stochastic dominance through a Monte Carlo experiment.

5 Monte Carlo Experiment

In this section, we use simulation to examine the finite-sample size and power performance of

both the standard and bootstrap tests of stochastic dominance. To shorten the exposition,

we only present the results for m � 2 in (1). So, the null hypothesis (H02) tests the equality

between the two networks’ distributions against second-order stochastic dominance (H12), or

no second-order stochastic dominance (H22). The data generating process (DGP) covers the

most common distributions that are used in applied work to model the degrees of networks.

Precisely, the two DGPs are specified as follows.

(I). pd
g�i
, d

g1�i
q1, i � 1, . . . , n, are drawn i.i.d. across i from a bivariate Poisson distribution

with mean p10, λq1 and correlation ρ. In this setup, the null hypothesis that the cdfs

of
�
d
g�i

�n
i�1

and
�
d
g1�i

�n
i�1

are equal can be expressed as λ � 10. So, λ � 10 describes

either H12 or H22.

(II). pd
g�i
, d

g1�i
q1, i � 1, . . . , n, are drawn i.i.d. across i from a bivariate Scale-free distribu-
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tion15 with parameters p2.5, γq1 and correlation ρ. As in design (I), the cdfs of
�
d
g�i

�n
i�1

and
�
d
g1�i

�n
i�1

are equal for a given ρ if and only if γ � 2.5. So, the values of γ � 2.5

characterize a violation of the null hypothesis.

In both setups, we vary ρ (correlation between the two samples) in t�0.9,�0.5, 0, 0.5, 0.9u,
but the results do not change qualitatively with alternative choices of ρ. In all cases, the

joint sample is generated using the algorithm provided by Macke et al. (2009) and Bethge

and Berens (2007). As noted in Figure 2, the support of the Poisson distribution with

λ � 10 is in the range 1-20, while that of the Scale-free distribution with γ � 2.5 is in the

range 1-9. Hence, any admissible partition may take these ranges into account. In order

to shorten the exposition, we consider two partitions for each setup. In design (I), the two

partitions are k � 4 and k � 8, while they are k � 3 and k � 4 in design (II). Specifi-

cally, P
p4q

n pIq :� tI1, I2, I3, I4u � tt1, . . . , 9u, t10u, t11u, t12�uu and P
p8q

n pIq :� tI1, . . . , I8u �
tt1, . . . , 7u, t8u, t9u, t10u, t11u, t12u, t13u, t14�uu in design (I), and in design (II) we have

P
p3q

n pIq :� tI1, I2, I3u � tt1u, t2u, t3�uu and P
p4q

n pIq :� tI1, I2, I3, I4u � tt1u, t2u, t3u, t4�uu .
All these partitions belong to P

pkq

n pIq P P
A
, and are thus admissible.

For the purpose of clarity and readability, we separate the analysis on the size from that

on the power.

5.1 Size Properties

In this section, we analyze the empirical rejection frequencies of both the standard and

bootstrap tests of stochastic dominance for various sample sizes: n P t100, 200, 500u. In each

design and for each partition P
pkq

n pIq specified above, the statistics WmpPpkq

n pIqq, SmpPpkq

n pIqq,
W�

mpPpkq

n pIqq, and S�
mpPpkq

n pIqq are constructed as outlined in Sections 3.2, 4.1 & 4.3. The

nominal level for both the standard and bootstrap tests is set at α � 5% and the empirical

rejection frequencies are computed with M � 10, 000 replications. The bootstrap critical

values are approximated using Mb � 199 pseudo samples of size n. For the standard tests,

we use the p1 � αqth quantiles of a χ2pk � 1q - distributed random variable for WmpPpkq

n pIqq
15Note that the probability density function of a random variable D that follows a Scale-free distribution

is given by P pdq � d
�γ rζpγqs�1

, d P N, where ζpγq � °�8
d�1

1
d
γ denotes the Riemann zeta function.
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and a SMMpk � 1,8q - distributed random variable for SmpPpkq

n pIqq.
Table 3 presents the results of the two designs. The first column contains the partitions

P
pkq

n pIq, and the second shows both the standard and bootstrap statistics. The other columns

present, for each value of network endogeneity (ρ) and sample size n, the empirical rejection

frequencies of the tests at the 5% nominal level.

First, in design (I) (Poisson distribution), the standard tests are slightly size distorted

for n P t100, 200u. Their maximal size rejection frequencies is around 8.7% [for WmpPpkq

n pIqq]
and 7.2% [for SmpPpkq

n pIqq] with the partition P
p8q

n pIq, but they decrease with the partition

P
p4q

n pIq (around 6.5% and 6.2% respectively). Meanwhile, their bootstrap counterparts have

rejections close to the 5% nominal level in most cases for both partitions, even with n � 100.

However, the bootstrap tests tend to under reject when n � 100 and ρ � 0.9, but this

phenomenon disappears as the sample size increases. On top of its overall good performance

in small samples, our results also suggest that the bootstrap tests are less sensitive to parti-

tioning into classes than the standard tests. Also, our results are consistent across all values

of networks’ endogeneity ρ.

Second, in design (II) (Scale-free distribution), both the standard and bootstrap tests

perform quite well irrespective of the partition used and network endogeneity ρ. However, the

bootstrap tests tend to be conservative when ρ � 0.9 and n P t100, 200u while the empirical

rejection frequencies of the standard tests are consistently around the 5% nominal level for

all sample sizes. Again, the under-rejections of the bootstrap tests observed when ρ � 0.9

and n P t100, 200u disappear as the sample size increases, as shown in the column ρ � 0.9

and n � 500 in the bottom part of the table.

5.2 Power Properties

We now study the empirical rejections of the various tests under the alternative hypothesis

(power). For simplicity, we only present the power analysis for n P t100, 500u and ρ P
t0, 0.5, 0.9u . In design (I) (Poisson distribution), the power analysis is conducted in the

direction of λ, where λ � 10 indicates the empirical size and λ � 10 indicates the empirical

power. Similarly, the power analysis is conducted in the direction of γ in design (II) (Scale-

free distribution): here γ � 2.5 indicates the empirical size, and γ � 2.5 characterizes the
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Table 3: Empirical size of the standard and bootstrap tests at 5%

(I): Poisson distribution

ρ �-0.9 ρ �-0.5 ρ �0 ρ �0.5 ρ �0.9

P
pkq

n pIq n Ñ 100 200 500 100 200 500 100 200 500 100 200 500 100 200 500

Wm 5.7 5.1 5.4 6.0 5.8 5.0 6.2 6.0 5.0 6.5 5.6 5.0 6.0 5.5 5.0

Sm 5.6 5.3 5.1 5.8 5.8 5.0 5.8 5.3 5.1 6.2 5.4 4.7 5.8 5.2 5.2

P
p4q
n pIq

W�
m 4.5 4.7 5.0 4.7 5.2 4.9 4.7 5.2 4.8 5.1 4.8 4.7 3.6 4.8 4.8

S�m 4.4 4.8 5.0 4.6 5.1 4.9 4.8 4.7 4.9 4.9 4.7 4.7 3.6 4.6 4.8

Wm 7.8 6.6 5.9 7.8 6.5 5.6 8.1 6.5 5.9 8.7 6.6 5.7 7.4 6.1 5.3

Sm 6.8 6.1 5.5 7.2 5.9 5.2 7.1 6.3 5.9 7.1 5.9 5.4 6.3 5.7 5.4

P
p8q
n pIq

W�
m 4.2 4.9 5.1 4.3 4.7 4.9 4.3 4.9 5.1 4.7 4.9 5.1 2.3 4.1 4.6

S�m 4.1 5.1 5.1 4.7 4.9 4.8 4.4 5.3 5.3 4.2 4.8 5.2 2.1 4.2 5.0

(II): Scale-free distribution

ρ �-0.9 ρ �-0.5 ρ �0 ρ �0.5 ρ �0.9

P
pkq

n pIq n Ñ 100 200 500 100 200 500 100 200 500 100 200 500 100 200 500

Wm 5.5 5.2 5.2 6.0 5.6 5.0 5.6 5.2 5.3 5.5 5.4 5.4 4.3 4.9 5.1

Sm 5.4 5.1 5.3 5.8 5.5 4.8 5.6 5.2 5.0 5.7 5.4 5.2 4.8 5.1 5.2

P
p3q
n pIq

W�
m 4.7 4.8 5.2 5.2 5.2 4.9 5.0 4.9 5.1 4.3 4.9 5.4 1.6 3.5 4.9

S�m 4.6 4.7 5.2 5.0 5.2 4.8 5.0 4.9 4.6 4.5 4.9 5.1 1.2 3.7 5.0

Wm 5.8 5.2 5.4 6.0 5.7 5.2 5.9 5.4 5.2 5.4 5.4 5.1 3.9 4.4 5.0

Sm 5.2 5.1 5.3 5.8 5.4 4.9 5.6 5.3 4.8 5.5 5.4 5.1 4.2 4.8 5.2

P
p4q
n pIq

W�
m 4.0 4.6 5.2 4.0 5.0 4.9 3.9 4.8 4.8 2.9 4.7 4.8 1.0 2.0 4.6

S�m 3.7 4.6 5.1 4.1 4.8 4.8 3.8 4.6 4.5 2.7 4.8 5.0 0.4 2.1 4.7
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empirical power at γ.

Figures 3 - 4 show the power curves of both the standard and bootstrap tests in the two

partitions for design (I), while Figures 5 - 6 present similar graphs for design (II) (Scale-free

distribution). In each figure, the sub-figures (a), (c), and (e) contain the power curves of

WmpPpkq

n pIqq and its bootstrap version, while the the sub-figures (b), (d), and (f) display

the power curves of SmpPpkq

n pIqq and its bootstrap version. Each sub-figure corresponds to a

value of networks’ endogeneity ρ P t0, 0.5, 0.9u.
First, when n � 500 and for both designs, the standard and the bootstrap tests perform

similarly, irrespective of the value of ρ and the partition used (see Figure 4 and Figure

6). While the empirical power of all tests converges to 100% for large values of λ (Figure

4) and γ (Figure 6), the convergence is much lower in design (II) (Scale-free distribution)

than in design (I) (Poisson distribution). This reflects the low speed of convergence in

the approximation of a multinomial distribution to a multivariate normal distribution (see

Lemma 1) when the original sample Dn is drawn from a Scale-free distribution than when

it is drawn from a Poisson distribution. Although from the theory, both the standard and

bootstrap tests of stochastic dominance are consistent, knowing that the empirical power of

tests approaches 1 with a sample size of n � 500 is an interesting result.

Second, when the sample size is relatively small (here n � 100), substantial differences

between standard and bootstrap tests appear. First, both the standard and bootstrap tests

exhibit more power in design (I) (Poisson distribution) than in design (II) (Scale-free distri-

bution). For example, for independent networks (ρ � 0) or low correlated networks (ρ � 0.5),

the empirical power is low for both the standard and bootstrap tests in design (II) (see sub-

figures (a), (b), (c) and (d) in Figure 5), while all tests exhibit more power in design (I) (see

see sub-figures (a), (b), (c) and (d) in Figure 3). Second, within partitions, the standard and

bootstrap tests perform more similarly in design (I) than in design (II). The slightly higher

power of the standard tests in Figure 3, especially for ρ P t0, 0.5u in partition P
p8q

n , is due

to their inability to control for the type-I error (see Table 3). Looking at the power of the

bootstrap tests, partition P
p4q

n has a small edge over partition P
p8q

n , especially for ρ P t0, 0.5u.
Mann and Wald (1942) and Williams (1950) recommended to allocate the same expected

number in each cell, whilst maintaining a threshold of above 5 in order to optimize test
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power. Although both partitions P
p4q

n and P
p8q

n are admissible (in the sense that a thresh-

old of above 5 is maintained in each cell), P
p4q

n is closer to Mann and Wald’s (1942) and

Williams’s (1950) recommendation than P
p8q

n when it comes to allocate the same expected

number in each cell. Note that the power gain from using P
p4q

n over P
p8q

n decreases as: (i) ρ

(networks’ endogeneity) increases (see sub-figures (c)-(f) in Figure 3), or (ii) the sample size

increases (see Figure 4). Finally, in design (II) (Scale-free distribution), while the standard

tests perform similarly in the two partitions (and also outperform their bootstrap counter-

parts in most cases), the power of the bootstrap tests is lower with partition P
p4q

n than with

P
p3q

n . The power gain from using P
p3q

n over P
p4q

n can even be substantial, especially with the

bootstrap test S�
mpPpkq

n pIqq (see sub-figures (d) and (f) in Figure 5). Again, partition P
p3q

n

is closer to Mann and Wald’s (1942) and Williams’s (1950) recommendation than partition

P
p4q

n .

Clearly, although bootstrapping has an overall good performance in terms of size control

irrespective of which partition in P
A

is used, our Monte Carlo results suggest that using the

partition that is closer to equalizing the expected number in cells can results in a substantial

power gain. Therefore, our recommendation is to follow this rule upon adjusting for the

form of the distribution of the degrees, as discussed in (2) - (6) of Section 3.2.
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Figure 3: Power with Poisson distribution: n � 100
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Figure 4: Power with Poisson distribution: n � 500
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Figure 5: Power with Scale-free distribution: n � 100
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Figure 6: Power with Scale-free distribution: n � 500
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6 Empirical Illustration

Rosenzweig and Stark (1989) illustrate the strategic role that women play in smoothing

consumption between villages whose income shocks are negatively correlated. In this ap-

plication, we investigate whether such a role exists for sharing risk between households in

rural India. In particular, we focus on testing gender differences across risk sharing networks

by using the stochastic dominance criteria. Bramoulle and Kranton (2007) characterize the

conditions that insure the existence of an aggregate strictly increasing (and even concave)

social welfare function in risk sharing networks, meaning that these networks could be ranked

in terms of social efficiency by applying the stochastic dominance criteria in Definition 1.

We use the data set from Banerjee et al. (2012, 2013) and Jackson et al. (2012) that

comprise a random sample of households from 75 different villages in southern India. We pool

the sub-samples from these villages to obtain one sample. The underlying assumption here

is that the 75 sub-samples are independent across villages, but not at the household level.

Each village contains on average 223 households with approximately half being sampled.

Each member of a surveyed household was asked to identify members of the village with

whom they engaged in a particular relationship, such as whose home they visit or with

whom they go to temple. Additionally, a census on the socioeconomic characteristics– such

as age, gender, religion, etc– of households was used to complete the data set; see Banerjee

et al. (2012, 2013) and Jackson et al. (2012) for a detailed description of the data.

To identify risk sharing behavior we use data on the following questions: Who would

come to you if he (or she) needed to borrow kerosene or rice? Who do you trust enough

that if he (or she) needed to borrow 50 rupees for a day you would lend it to him (or her)?

We construct female and male networks for each of the goods lending and money lending

relationships as follows. We remove from the sample any person who does not name at least

one connection, as it is difficult to distinguish non-response from having zero connections.

We also remove any person under the age of 18. Of the remaining observations, we omit

any household which does not contain at least one man and one woman. The networks are

then constructed with a node representing each household. In the female money lending

network, there is a directed link from household i to household i1 if any woman in household
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i has reported that she would lend money to any member (male or female) of household i1,

and similarly for the male money lending network. This means that the male and female

networks have the same set of households as nodes and the gender corresponding to the

network determines the set of directed links. The goods lending networks are constructed

similarly. As an illustration, Figure 7 shows these networks within the households of village

1 in the data.

Figure 7: Risk Sharing Networks for Village 1

(a) Female Goods Lending (b) Male Goods Lending

(c) Female Money lending (d) Male Money Lending
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As outlined above, we conduct the tests using the pooled sample of all 75 villages. The

pooled sample has size n � 5924 households in goods lending networks, and n � 5656

households in money lending networks. Table 4 summarizes the out-degree distributions of

these networks as well as the correlations between male and female networks for both goods

lending and money lending. As seen, the correlation between male and female networks is

not small: 0.55 (for goods lending) and 0.46 (for money lending). Furthermore, in each

case (goods lending and money lending) the degree distributions of both male and female

networks are closer to the degree distribution of a Poisson random graph than that of a scale-

free network (see Figure 2). From Sections 3.2-5, we use the following admissible partition

with k � 5 based on Table 4:

P
p5q

n pIq � tIlu5
l�1 , Il � tlu for l � 1, . . . , 4 and I5 � t5�u. (19)

In both the goods lending and money lending networks, we test whether the female

network first- and second-order stochastically dominates the male network. The tests are run

at the 1% and 5% nominal levels, and the bootstrap statistics critical values are approximated

using B � 199 pseudo-samples. The results are displayed in table 5. For goods lending,

both the standard and bootstrap tests are in favor of the first- and second-order stochastic

dominance of the female network at the 1% and 5% nominal levels. However, for money

lending, we could only find evidence of the first- and second-order dominance of the female

network at the 5% nominal level. At the 1% nominal level, neither network dominates

the other using both the standard and bootstrap tests. These results suggest that women

overall tend to form denser risk sharing networks than do men, especially for goods lending.

One possible explanation for this might be a higher average risk aversion among women, as

documented by Borghans et al. (2009).
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Table 4: Empirical Degree Distributions

Goods Money

Degree Male Female Male Female

1 527 426 962 1012

2 2554 2133 2653 2509

3 1801 1831 1270 1263

4 734 1014 460 564

5 172 306 164 194

6 94 136 82 69

7 32 46 39 21

8 7 19 17 14

9 0 5 3 3

10 2 6 2 5

11 0 2 1 1

12 0 0 0 1

13 0 0 2 0

14 1 0 1 0

Obs. 5924 5924 5656 5656

Correlation 0.55 0.46
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Table 5: Stochastic dominance between female and male networks

Goods lending networks

α � 0.01 α � 0.05

Statistics Ó m Ñ 1 2 1 2

Wm 310.08 310.08 310.08 310.08

χ2
4pαq 13.28 13.28 9.49 9.49

c�Wm
pαq 11.49 12.36 9.32 10.09

Sm 16.92 17.01 16.92 17.01

z4pαq 3.02 3.02 2.49 2.49

c�Smpαq 3.17 2.93 2.64 2.60

Money lending networks

α � 0.01 α � 0.05

Statistics Ó m Ñ 1 2 1 2

Wm 19.29 19.29 19.29 19.29

χ2
4pαq 13.28 13.28 9.49 9.49

c�Wm
pαq 15.60 16.73 11.07 8.80

Sm 2.92 2.59 2.92 2.59

z4pαq 3.02 3.02 2.49 2.49

c�Smpαq 3.05 3.38 2.59 2.47

: χ2
4pαq and z4pαq are the p1�αqth quantiles of a chi-squared distributed random variable with 4 degrees

of freedom a SMMp4,8q-distributed random variable respectively.

; c�Wm
pαq and c�Smpαq are the p1�αqth critical values of the bootstrap statistics W�

m and S�m respectively.
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7 Conclusion

This paper has illustrated how stochastic dominance criteria can be used to rank networks in

terms of social efficiency, and developed statistical tests for assessing these criteria. The tests

proposed can be seen as a generalization of the Pearson-type and the studentized maximum

modulus (SMM)-type statistics usually employed for assessing stochastic dominance criteria

in the literature on income distributions, poverty and inequality measures. Our statistics

differ from the prior literature not only through a correction to account for the correlation

between the degree distributions of networks, but also their direct dependence on partitioning

into classes. We show that a combination of the modified Pearson- and SMM-type statistics

into a single decision rule is necessary to inform us on whether stochastic dominance holds

or not, once equality between the degree distributions of the networks is rejected. As these

statistics often depend on the way class intervals are allocated, controlling for type-I error

uniformly over the set of all admissible class allocations16 is important for the asymptotic

results to give a good approximation of their empirical size to the nominal level.

We provide an analysis of both the size and power properties of the tests. On level

control, we establish uniform convergence of their empirical size to the nominal level when

the usual asymptotic chi-square and SMM critical values are applied. On power, we show

that test consistency holds no matter which admissible partition is used. Finally, we provide

a bootstrap method that enhances the finite-sample performance of the tests. We estab-

lish uniform consistency of the bootstrap for both the proposed Pearson- and SMM-tests

irrespective of whether the null hypothesis holds or not. We present a Monte Carlo experi-

ment that confirms our theoretical findings. Using the data set of Jackson et al. (2012) and

Banerjee et al. (2012, 2013), the proposed tests were illustrated through an investigation of

households’ risk sharing networks across 75 villages in rural India. Both the goods lending

and money lending networks were considered, and the gender difference within each network

was our main focus. Our results suggested that women within these villages overall tend to

form denser risk sharing networks than do men, especially for goods lending.

16By admissible class allocation or admissible partition, we mean a partition in which the minimum ex-

pected number in each cell is at least 5.
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A Appendix: Proofs

In order to establish the proofs of the lemmata and theorems of the main text, it is useful

to state some basic convergence of covariance matrices pΣj, j P tg, g1u, pΣgg1 , and pΩm given in

p9q - p12q.

Lemma 4. Suppose that Assumption 1 holds. For any P
pkq

n pIq P P
A
, we have:

pi.q p lim
nÑ8

ppΣjq � Σj :�

�
�������

pj�1p1 � pj�1q �pj�1pj�2 . . . �pj�1pj�k

�pj�2pj�1 pj�2p1 � pj�2q . . .
...

...
... . . .

...

�p
j�k
pj�1 �p

j�k
pj�2 . . . p

j�k
p1 � p

j�k
q

�
������
@ j P tg, g1u,

pii.q p lim
nÑ8

ppΣgg1q � Σgg1 :�

�
�������

p
gg1�11

� pg�1pg1�1 p
gg1�12

� pg�1pg1�2 . . . p
gg1�1k

� pg�1pg1�k

p
gg1�21

� pg�2pg1�1 p
gg1�22

� pg�2pg1�2 . . .
...

...
... . . .

...

p
gg1�k1

� p
g�k
p
g1�1

p
gg1�k2

� p
g�k
p
g1�2

. . . p
gg1�kk

� p
g�k
p
g1�k

�
������
,

piii.q p lim
nÑ8

ppΩmq � Ωm :� T
m
pΣg � Σg1 � Σgg1 � Σ1

gg1qT
1m .

Proof of Lemma 4. pi.q Suppose that Assumption 1 holds and let P
pkq

n pIq � tIlukl�1 P
P

A
. From the i.i.d. sampling, it follows that p̂

j�l
� 1

n

°n
i�1 1pdj�i P Ilq pÑ Epdj�iq � p

j�il
� p

j�l

for all pj, lq P tg, g1u � t1, . . . , ku. It is clear from (9) that pΣj
pÑ Σj for all j P tg, g1u. The

proof of pii.q follows the same steps and piii.q is implied by pi.q and pii.q.

Proof of Lemma 1. Let P
pkq

n pIq � tIlukl�1 P P
A

and define

p̂ � rp̂1
g

: p̂1
g1
s1, p � rp1

g
: p1

g1
s1, (20)

where p̂g � rp̂g�1 , . . . , p̂g�ks1 : k�1, p̂
g1
� rp̂

g1�1
, . . . , p̂

g1�k
s1 : k�1, pg � rp

A�1
, . . . , p

A�k
s1 : k�1, and

p
g1
� rp

B�1
, . . . , p

B�k
s1 : k � 1, so both p̂ and p are 2k � 1 vectors obtained by stacking p̂g and

p̂
g1

together (for p̂) and pg and p
g1

together (for p). From (7) - (8), we have p̂
j
� 1

n

°n
i�1 uj�i

and for each j P tg, g1u, uj�i, i � 1, . . . , n are i.i.d. multinomial random variables with

parameter p
j
� Epuj�iq under Assumption 1. Therefore, by the multivariate central limit
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theorem (MVCLT), we have:

?
npp̂� pq � 1?

n

ņ

i�1

�
� ug�i � Epug�iq
ug1�i � Epug1�iq

�
� dÑ N p0, Σpq , (21)

where Σp � Avar

�
� 1?

n

°n
i�1

�
� ug�i � Epug�iq
ug1�i � Epug1�iq

�
�
�
 �

�
� Σg Σgg1

Σ1
gg1 Σg1

�
� , Σj and Σgg1 are the

limits in Lemma 4. Now, let Ik be the identity matrix of order k. By noting that

�
Ik �Ik

�?
npp̂� pq �

�
Ik �Ik

�?
n

�
� p̂g � pg

p̂
g1
� p

g1

�
�

� ?
nrpp̂g � p̂

g1
q � ppg � p

g1
qs, (22)

it is straightforward to see that
?
nrpp̂g � p̂g1 q� ppg � pg1 qs

dÑ N
�
0, Σg � Σg1 � pΣgg1 � Σ1

gg1q
�

from (21). This completes the proof of Lemma 1.

Proof of Lemma 2. Suppose that Assumption 1 holds and let P
pkq

n pIq � tIlukl�1 P P
A
.

paq Assume first that H0m holds, i.e., pg � p
g1
. We focus on the statistic WmpPpkq

n pIqq.
The proof for SmpPpkq

n pIqq can easily be adapted from Stoline and Ury (1979). From Lemmas

1 and 4, along with the expression of WmpPpkq

n pIqq in (12), it is straightforward to see that
?
nT

mrpp̂g � p̂
g1
q � ppg � p

g1
qs H0m� ?

nT
mpp̂g � p̂

g1
q dÑ ψm � N p0, Ωmq so that we get

WmpPpkq

n pIqq dÑ ψ1mΩ
�

mψm, (23)

where Ωm � Σg�Σg1�pΣgg1�Σ1
gg1q, and Ω

�

m is the generalized inverse of Ωm. As rankpΩmq �
k � 1, there exists [see Dhrymes (1978, Proposition 3.5)] a diagonal matrix Dk�1 whose

diagonal elements are the nonzero eigenvalues of Ωm (in decreasing order of magnitude), and

a k�pk� 1q matrix Pk�1 whose columns are the (orthogonal) eigenvectors corresponding to

the nonzero roots of Ωm, such that

Ωm � Pk�1Dk�1P
1
k�1 and Ω

�

m � Pk�1D
�1
k�1P

1
k�1. (24)

Hence, we have: ψ1mΩ
�

mψm � ψ1mPk�1D
�1
k�1P

1
k�1ψm � ψ̄1mD

�1
k�1ψ̄m from the last identity in

(24), where ψ̄m � P 1
k�1ψm. Since ψm � N p0, Ωmq , we have ψ̄m � N

�
0, P 1

k�1ΩmPk�1

� �
N
�
0, P 1

k�1Pk�1Dk�1P
1
k�1Pk�1

� � N p0, Dk�1q from the first identity in (24), where P 1
k�1Pk�1 �
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Ik�1. Therefore, D
�1{2
k�1 ψ̄m � N p0, Ik�1q so that WmpPpkq

n pIqq dÑ ψ̄1mD
�1
k�1ψ̄m � χ2pk � 1q, as

stated.

pbq Assume now that H1m or H2m is true. Hence, we have pg � p
g1
� 0 so that

v̂m
pÑ vm � T

mppg � p
g1
q � 0. Furthermore, as pΩm

pÑ Ωm, it is clear that v̂1mpΩ�

mv̂m
pÑ ppg �

pgq1Tm1
Ω

�

mT
mppg � p

g1
q ¡ 0 because rankpΩ�

mq � k � 1. Therefore, we find WmpPpkq

n pIqq �
nv̂1mpΩ�

mv̂m
pÑ �8. Similarly, we can see that SmpPpkq

n pIqq pÑ �8. This completes the proof

of Lemma 2.

Proof of Theorem 1. (a) Suppose first that H0m holds. Since P
A

is a discrete and finite set

of collection of partitions P
pkq

n pIq, the sequence of probabilities α
pkq
1,nrPpkq

n pIq,WmpPpkq

n pIqqs �
PrWmpPpkq

n pIqq ¡ χ2
k�1
pαqs P r0, 1s and α

pkq
2,nrPpkq

n pIq,SmpPpkq

n pIqqs � PrSmpPpkq

n pIqq ¡ z
k�1
pαqs P

r0, 1s can be ordered for all possible collections P
pkq

n pIq P P
A
. Therefore, there are sequences

rPpkq
n , P̆

pkq
n P P

A
and subsequences tπn : n ¥ 1u , tπ̌n : n ¥ 1u of tn : n ¥ 1u such that

lim sup
nÑ8

sup
P
A

α
pkq
1,nrP

pkq

n pIq,WmpP
pkq

n pIqqs :� lim sup
nÑ8

sup
P
A

PrWmpP
pkq

n pIqq ¡ χ2
k�1

pαqs

� lim sup
nÑ8

PrWmprPpkq
n q ¡ χ2

k�1
pαqs

� lim
nÑ8PrWmprPpkq

πn q ¡ χ2
k�1

pαqs. (25)

lim sup
nÑ8

sup
P
A

α
pkq
2,nrP

pkq

n pIq,SmpP
pkq

n pIqqs :� lim sup
nÑ8

sup
P
A

PrSmpP
pkq

n pIqq ¡ z
k�1

pαqs

� lim sup
nÑ8

PrSmpP̆pkq
n q ¡ z

k�1
pαqs

� lim
nÑ8PrSmpP̆

pkq
π̌n
q ¡ z

k�1
pαqs. (26)

But from Lemma 2-(a), we have lim
nÑ8

PrWmprPpkq
πn q ¡ χ2

k�1
pαqs � Prχ2

k�1
¡ χ2

k�1
pαqs � α and

lim
nÑ8

PrSmpP̆pkq
π̌n q ¡ z

k�1
pαqs � PrSMMpk,8q ¡ z

k�1
pαqs � α. Using (25)-(26), we get:

lim sup
nÑ8

sup
P
A

PrWmpPpkq

n pIqq ¡ χ2
k�1
pαqs � α and lim sup

nÑ8
sup
P
A

PrSmpPpkq

n pIqq ¡ z
k�1
pαqs � α.

(b) Under H1m or H2m, the results follow immediately from Lemma 2-(b).

Proof of Lemma 3. We prove the results for W�
mpPpkq

n pIqq. The proof for S�
mpPpkq

n pIqq
can be constructed in a similar way. First, we can write the bootstrap statistic W�

mpPpkq

n pIqq
as

W�
mpP

pkq

n pIqq � nṽ�
1

m
pΩ��
m ṽ�m � npv̂�m � v̂mq1pΩ��

m pv̂�m � v̂mq. (27)
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(a) Suppose first that H0m holds and let S�m � ?
npv̂�m � v̂mq. We can express S�m as:

S�m �
ņ

i�1

R�
m,i, where R�

m,i �
1?
n

Tm
�
pd�g�i � d�g1�iq �

1

n

ņ

i�1

pug�i � ug1�iq
�
.

Moreover, from the i.i.d. sampling under P�, we have E�pd�g�i�d�g1�iq � 1
n

°n
i�1pug�i�ug1�iq, so

that R�
m,i can be expressed as R�

m,i � 1?
n
Tm

�
d�g�i � d�g1�i � E�pd�g�i � d�g1�iq

�
, i.e., tR�

m,iuni�1 are

also i.i.d under P�. We want to verify the conditions of the Liapunov Central Limit Theorem

for S�m.

paq By definition, it is straightforward to see that E�pR�
m,iq � 0.

pbq E�pR�2
m,iq � var�pR�

m,iq � n�1pΩm   8 a.s.

pcq Finally, we need to show that lim
nÑ8

°n
i�1 E�r}R�

m,i}2�δs � 0 a.s. for some δ ¡ 0. We have:

ņ

i�1

E�r}R�
m,i}

2�δs ¤ cn�
δ
2n�1

ņ

i�1

E�
�
}Tmpd�g�i � d�g1�iq}

2�δ � }
1

n

ņ

i�1

Tmpug�i � ug1�iq}2�δ
�

� cn�
δ
2E�

�
}Tmpd�g�i � d�g1�iq}

2�δ
�
� cn�

δ
2

��� 1

n

ņ

i�1

Tmpug�i � ug1�iq
���2�δ

for a large enough constant c P R�.

First, we have 1
n

°n
i�1 Tmpug�i � ug1�iq pÑ Tmppg � p

g1
q � vm � 0 under Assumption

1 and H0m. So, the second term of the last equality in the above equation is such

that cn�
δ
2

��� 1
n

°n
i�1 Tmpug�i � ug1�iq

���2�δ pÑ 0 since cn�
δ
2 Ñ 0 when n Ñ 8. For the

first term, we note that E��}Tmpd�g�i � d�g1�iq}2�δ� p�Ñ
��� 1
n

°n
i�1 Tmpug�i � ug1�iq

���2�δ
and

we know that
��� 1
n

°n
i�1 Tmpug�i � ug1�iq

���2�δ pÑ ��Tmppg � p
g1
q��2�δ � }vm}2�δ � 0 when

H0m holds. So, we get cn�
δ
2E��}Tmpd�g�i � d�g1�iq}2�δ� pÑ 0 a.s. As a result, we have

lim
nÑ8

°n
i�1 E�r}R�

m,i}2�δs � 0 a.s. as required.

Since pΩ�
m�pΩm | Dn

a.s.Ñ 0, pΩm
pÑ Ωm, and the conditions of the Liapunov CLT are satisfied,we

have

S�m | Dn
dÑ ψm � Np0, Ωmq a.s.

Now, we want to show that W�
mpPpkq

n pIqq | Dn
dÑ χ2pk � 1q a.s. for any P

pkq

n pIq P P
A
. From

(27) and the fact that pΩ��
m | Dn

pÑ Ωm a.s., it is straightforward to see that

W�
mpP

pkq

n pIqq | Dn � S�
1

m
pΩ��
m S�m | Dn

dÑ ψ1mΩ
�

mψm a.s. (28)
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Since we have ψ1mΩ
�

mψm � χ2pk � 1q by Lemma 2, it is clear that W�
mpPpkq

n pIqq | Dn
dÑ

χ2pk � 1q a.s. for all P
pkq

n pIq P P
A
, as stated.

(b) Suppose now that H0m fails, i.e., H1m or H2m holds. It is easy to see from the proof in

(a) that 1?
n
S�

1

m | Dn
pÑ vm a.s., pΩ�

m | Dn
pÑ Ωm a.s. so that 1

n
W�

mpPpkq

n pIqq | Dn
a.s.Ñ v1mΩ

�

mvm ¡
0 because vm � 0 under H1m or H2m. Therefore, we have W�

mpPpkq

n pIqq | Dn
pÑ �8 a.s.

under H1m or H2m for any P
pkq

n pIq P P
A

, as required.

Proof of Theorem 2. As in Lemma 3, we will prove the results for W�
mpPpkq

n pIqq. The

proof for S�
mpPpkq

n pIqq can be constructed in a similar way.

(a) Suppose first that H0m holds. We know from Lemma 3 that pΩ�
m � pΩm | Dn

a.s.Ñ 0

and pΩm has rank k � 1 by construction. Hence, pΩ�
m also has rank k � 1 a.s. Therefore,

from Dhrymes (1978, Proposition 3.5) there exists a diagonal matrix D̂�
k�1 whose diagonal

elements are the nonzero eigenvalues of pΩ�
m (in decreasing order of magnitude), a k�pk� 1q

matrix P̂ �
k�1 whose columns are the (orthogonal) eigenvectors corresponding to the nonzero

roots of pΩ�
m, such that

pΩ�
m � P̂ �

k�1D̂
�
k�1P̂

�1
k�1 and pΩ��

m � P̂ �
k�1D̂

��1

k�1P̂
�1
k�1, (29)

where P̂ �
k�1 and D̂�

k�1 satisfy the following convergence:

P̂ �
k�1 | Dn

pÑ Pk�1 a.s.. and D̂�
k�1 | Dn

pÑ Dk�1 a.s., (30)

where Pk�1 and Dk�1 are the matrices defined in equation (24) [in the proof of Lemma 2].

Now, from the proof of Lemma 3, we can express W�
mpPpkq

n pIqq as:

W�
mpP

pkq

n pIqq � S�
1

m
pΩ��
m S�m � rS�1m rS�m, (31)

where rS�m � D̂��1{2

k�1 P̂ �1
k�1S

�
m � °n

i�1
rR�
m,i and t rR�

m,iuni�1 are also i.i.d under P�. By adapting

the proof of the Liapunov Central Limit Theorem in Lemma 3, we have

rS�m | Dn
dÑ Np0, Ik�1q a.s. (32)

Moreover, since t rR�
m,iuni�1 are i.i.d under P� with finite second moments, from the Berry-

Esseen theorem for sums of independent random vectors, we have

sup
xPRk�1

���P�prS�m ¤ xq � Φpxq
��� ¤ cpkq?

n

ņ

i�1

E�r} rR�
m,i}2�δs, (33)
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where cpkq is a constant that depends on k (= dimension of rS�m), Φp�q � cdf of Np0, Ik�1q.
Moreover, by adapting the proof of the Liapunov Central Limit Theorem in step (c) of the

proof of Lemma 3, we have

ņ

i�1

E�r} rR�
m,i}

2�δs �
ņ

i�1

E�
�
}D̂��1{2

k�1 P̂ �1
k�1R

�
m,i}

2�δ
�
¤ cn�

δ
2n�1

ņ

i�1

E�
�
}D̂��1{2

k�1 P̂ �1
k�1T

mpd�g�i � d�g1�iq}
2�δ

�}
1

n

ņ

i�1

D̂��1{2

k�1 P̂ �1
k�1T

mpug�i � ug1�iq}2�δ
�
� cn�

δ
2E�

�
}D̂��1{2

k�1 P̂ �1
k�1T

mpd�g�i � d�g1�iq}
2�δ �

cn�
δ
2

��� 1

n

ņ

i�1

D̂��1{2

k�1 P̂ �1
k�1T

mpug�i � ug1�iq
���2�δ (34)

for a large enough constant c P R�. However, the second term of the last equality in (34) is

such that:

cn�
δ
2

��� 1

n

ņ

i�1

D̂��1{2

k�1 P̂ �1
k�1T

mpug�i � ug1�iq
���2�δ pÑ 0 a.s.

because
��� 1
n

°n
i�1 D̂

��1{2

k�1 P̂ �1
k�1T

mpug�i � ug1�iq
���2�δ

a.s.Ñ
���D�1{2

k�1 P
1
k�1vm

���2�δ
� 0 under H0m and

cn�
δ
2 Ñ 0 as nÑ 8. Similarly, the first term of the last equality in (34) is such that:

cn�
δ
2E�

�
}D̂��1{2

k�1 P̂ �1
k�1T

mpd�g�i � d�g1�iq}2�δ
�

pÑ 0 a.s.

because E�
�
}D̂��1{2

k�1 P̂ �1
k�1T

mpd�g�i � d�g1�iq}2�δ
�

p�Ñ
��� 1
n

°n
i�1 D̂

�1{2
k�1 P̂

1
k�1T

mpug�i � ug1�iq
���2�δ

and��� 1
n

°n
i�1 D̂

�1{2
k�1 P̂

1
k�1T

mpug�i � ug1�iq
���2�δ pÑ

���D�1{2
k�1 P

1
k�1vm

���2�δ
� 0 under H0m; and in addition

cn�
δ
2 Ñ 0 as nÑ 8. Therefore, we have

°n
i�1 E�r} rR�

m,i}2�δs | Dn
pÑ 0 a.s. in prob-P, which

entails that cpkq?
n

°n
i�1 E�r} rR�

m,i}2�δs | Dn
pÑ 0 a.s. in prob-P. From (33), it is clear that we

have

sup
xPRk�1

���P�prS�m ¤ xq � Φpxq
��� pÑ 0 in prob-P. (35)

Now, by using (31), we can write P�pW�
mpPpkq

n pIqq ¤ wq as: P�pW�
mpPpkq

n pIqq ¤ wq �
P�prS�m P Cwq where Cw � tx P Rk�1 : x1x ¤ wu are convex sets in Rk�1. From Bhattacharya

and Rao (1976, Corollary 3.2), we have sup
wPR

Φ
�pBCwqε

� ¤ d.ε for some constant d and ε ¡ 0.

Hence, Bhattacharya and Ghosh (1978, Theorem 1) holds with Wn � W�
mpPpkq

n pIqq and

B � Cw, thus

sup
wPR

���P�pW�
mpP

pkq

n pIqq ¤ wq �Gk�1pwq
��� pÑ 0 in prob-P, (36)
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where Gk�1p�q � cdf of χ2pk � 1q. Finally, we have:

sup
wPR

���P�pW�
mpPpkq

n pIqq ¤ wq � PpWmpPpkq

n pIqq ¤ wq
��� pÑ 0 in prob-P by Lemma 2.

(b) UnderH1m orH2m, the results follow straightforwardly from Lemma 2-(b) and Lemma

3-(b), so the proof is omitted.

Bibliography

Aliprantis, D. and F. G.-C. Richter (2013). Evidence of neighborhood effects from MTO:

LATEs of neighborhood quality. Review of Economics and Statistics 88 (3), 389–432.

Anderson, G. (1996). Nonparametric tests of stochastic dominance in income distributions.

Econometrica 64 (5), pp. 1183–1193.

Andrews, D. W. (2002). Higher-order improvements of a computationally attractive k-step

bootstrap for extremum estimators. Econometrica 70 (1), 119–162.

Atkinson, A. B. (1987). On the measurement of poverty. Econometrica: Journal of the

Econometric Society 55 (4), 749–764.

Banerjee, A., A. G. Chandrasekhar, E. Duflo, and M. O. Jackson (2012, January). The

diffusion of microfinance. NBER Working Papers 17743, National Bureau of Economic

Research, Inc.

Banerjee, A., A. G. Chandrasekhar, E. Duflo, and M. O. Jackson (2013). The diffusion of

microfinance. Science 341 (6144), 1236498: 1–7.

Barrett, G. F. and S. G. Donald (2003). Consistent tests for stochastic dominance. Econo-

metrica 71 (1), 71–104.

Barrett, G. F., S. G. Donald, and D. Bhattacharya (2014). Consistent nonparametric tests

for lorenz dominance. Journal of Business & Economic Statistics 32 (1), 1–13.

Beach, C. M. and J. Richmond (1985). Joint confidence intervals for income shares and

lorenz curves. International Economic Review 26, 439–450.

45



Bethge, M. and P. Berens (2007). Near-maximum entropy models for binary neural repre-

sentations of natural images. In Advances in Neural Information Processing Systems, pp.

97–104.

Bhattacharya, R. N. and J. K. Ghosh (1978). On the validity of the formal Edgeworth

expansion. The Annals of Statistics 6 (2), 434–451.

Bhattacharya, R. N. and R. R. Rao (1976). Normal approximation and asymptotic expan-

sions. John Wiley & Sons, Inc.

Bickel, P. J. and A. Chen (2009). A nonparametric view of network models and newman–

girvan and other modularities. Proceedings of the National Academy of Sciences 106 (50),

21068–21073.

Bickel, P. J., A. Chen, E. Levina, et al. (2011). The method of moments and degree distri-

butions for network models. The Annals of Statistics 39 (5), 2280–2301.

Blume, L. E., W. A. Brock, S. N. Durlauf, and R. Jayaraman (2015). Linear social interac-

tions models. Journal of Political Economy 123 (2), 444–496.

Borghans, L., J. J. Heckman, B. H. H. Golsteyn, and H. Meijers (2009). Gender differences in

risk aversion and ambiguity aversion. Journal of the European Economic Association 7 (2-

3), 649–658.

Bramoulle, Y. and R. Kranton (2007). Risk-sharing networks. Journal of Economic Behavior

& Organization 64 (3-4), 275–294.

Brown, B. W. and W. K. Newey (2002). Generalized method of moments, efficient boot-

strapping, and improved inference. Journal of Business & Economic Statistics 20 (4),

507–517.

Bursztyn, L., F. Ederer, B. Ferman, and N. Yuchtman (2014). Understanding mechanisms

underlying peer effects: Evidence from a field experiment on financial decisions. Econo-

metrica 82 (4), 1273–1301.

46



Calvo-Armengol, A. (2004, March). Job contact networks. Journal of Economic The-

ory 115 (1), 191–206.

Chandrasekhar, A. (2016). Econometrics of network formation. In The Oxford Handbook of

the Economics of Networks. Oxford Handbook Online.

Cochran, W. G. (1952). The χ2 test of goodness of fit. The Annals of Mathematical Statis-

tics 23 (3), 315–345.

Davidson, R. and J.-Y. Duclos (2000). Statistical inference for stochastic dominance and for

the measurement of poverty and inequality. Econometrica 68 (6), 1435–1464.

Dhrymes, P. J. (1978). Mathematics for econometrics. Springer.

Edwards, A. L. (1950). On ‘The use and misuse of the chi-square test’- The case of the 2x2

contingency table. Psychological bulletin 47 (4), 341.

Fafchamps, M. and S. Lund (2003). Risk-sharing networks in rural philippines. Journal of

development Economics 71 (2), 261–287.

Goldsmith-Pinkham, P. and G. W. Imbens (2013). Social networks and the identification of

peer effects. Journal of Business & Economic Statistics 31 (3), 253–264.

Goyal, S. (2012). Connections: an introduction to the economics of networks. Princeton

University Press.

Graham, B. S. (2014). Methods of identification in social networks. Technical report, Na-

tional Bureau of Economic Research.

Gumbel, E. J. (1943). On the reliability of the classical chi-square test. The Annals of

Mathematical Statistics 14 (3), 253–263.

Hahn, J. (1996). A note on bootstrapping generalized method of moments estimators. Econo-

metric Theory 12 (01), 187–197.

Hall, P. and J. L. Horowitz (1996). Bootstrap critical values for tests based on generalized-

method-of-moments estimators. Econometrica 64 (4), 891–916.

47



Hausman, J. A. (1978). Specification tests in econometrics. Econometrica: Journal of the

Econometric Society 46 (6), 1251–1271.

Hotelling, H. (1930). The consistency and ultimate distribution of optimum statistics. Trans-

actions of the American Mathematical Society 32 (4), 847–859.

Hsieh, C.-S. and L. F. Lee (2016). A social interactions model with endogenous friendship

formation and selectivity. Journal of Applied Econometrics 31 (2), 301–319.

Inoue, A. and M. Shintani (2006). Bootstrapping GMM estimators for time series. Journal

of Econometrics 133 (2), 531–555.

Jackson, M. O. (2014). Networks in the understanding of economic behaviors. The Journal

of Economic Perspectives 28 (4), 3–22.

Jackson, M. O. et al. (2008). Social and economic networks. Princeton University Press.

Jackson, M. O., T. Rodriguez-Barraquer, and X. Tan (2012). Social capital and social quilts:

Network patterns of favor exchange. American Economic Review 102 (5), 1857–97.

Leung, M. P. (2015). Two-step estimation of network-formation models with incomplete

information. Journal of Econometrics 188 (1), 182–195.

Lewis, D. and C. J. Burke (1949). The use and misuse of the chi-square test. Psychological

Bulletin 46 (6), 433.

Linton, O., E. Maasoumi, and Y.-J. Whang (2005). Consistent testing for stochastic domi-

nance under general sampling schemes. The Review of Economic Studies 72 (3), 735–765.

Liu, X. (2013). Estimation of a local-aggregate network model with sampled networks.

Economics Letters 118 (1), 243–246.

Macke, J. H., P. Berens, A. S. Ecker, A. S. Tolias, and M. Bethge (2009). Generating spike

trains with specified correlation coefficients. Neural Computation 21 (2), 397–423.

Mann, H. B. and A. Wald (1942). On the choice of the number of class intervals in the

application of the chi square test. The Annals of Mathematical Statistics 13 (3), 306–317.

48



McFadden, D. (1989). Testing for stochastic dominance. In Studies in the Economics of

Uncertainty, pp. 113–134. Springer.

Pearson, K. (1900). On the criterion that a given system of deviations from the probable in

the case of a correlated system of variables is such that it can be reasonably supposed to

arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine

and Journal of Science 50 (302), 157–175.

Richmond, J. (1982). A general method for constructing simultaneous confidence intervals.

Journal of the American Statistical Association 77 (378), 455–460.

Rosenzweig, M. R. and O. Stark (1989). Consumption smoothing, migration, and marriage:

Evidence from rural india. Journal of Political Economy 97 (4), 905–926.

Rothschild, M. and J. E. Stiglitz (1970). Increasing risk: I. A definition. Journal of Economic

Theory 2 (3), 225 – 243.

Schorr, B. (1974). On the choice of the class intervals in the application of the chi-square

test. Statistics: A Journal of Theoretical and Applied Statistics 5 (4-5), 357–377.

Stoline, M. R. and H. K. Ury (1979). Tables of the studentized maximum modulus distri-

bution and an application to multiple comparisons among means. Technometrics 21 (1),

pp. 87–93.

Tesfatsion, L. (1997). A trade network game with endogenous partner selection. In Compu-

tational approaches to economic problems, pp. 249–269. Springer.

Williams, C. A. (1950). The choice of the number and width of classes for the chi-square

test of goodness of fit. Journal of the American Statistical Association 45 (249), 77–86.

Yates, F. (1934). Contingency table involving small numbers and the chi-square test. Journal

of the Royal Statistical Society 1 (2), 217–235.

49


	Working paper 2017-02  Front Page
	School of Economics

	wp2017-02



