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Abstract: We propose a novel approach to the modelling of behavior in first-price and all-

pay auctions that builds on the presumption that bidders do not engage in game-theoretic 

reasoning. Our models, AsP (for Aspired-Payoff) and nIBE (for naïve Impulse Balance 

Equilibrium), exploit the information available to bidders and assume risk neutrality, no 

best-responding behavior and no profit-maximization. Their parameter-free variants entail 

either overbidding or Nash equilibrium bidding. We assess their explanatory power with 

the data of first-price and all-pay auction experiments and find that overall, our models 

outperform Nash in explaining the data on either format. Assuming probability 

misperception further improves their goodness-of-fit. Assuming impulse weighting in 

nIBE may lead to overbidding and organizes the effect of end-of-round information 

feedback on behavior in repeated auctions.  
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Since Vickrey’s (1961) seminal paper, the task of bidding in auctions has typically been 

approached from a game-theoretic perspective. While this approach is compelling for the 

analysis of auctions that entail a weakly dominant strategy such as ascending-price auctions, 

its relevance for the analysis of first-price and all-pay auctions, which entail complex strategic 

reasoning, has been challenged by decades of experimental research reporting an ‘overbidding’, 

i.e., bidding more than the Symmetric Bayes-Nash Equilibrium prediction for risk neutral 

bidders (see Kagel, 1995, 2014, and Dechenaux, Kovenock and Sheremeta, 2015, for reviews). 

With the exception of Learning Direction Theory which predicts qualitative changes in bidders’ 

round-to-round behavior (see Selten and Buchta, 1999), the proposed rationales for this pattern 

remain game-theoretic in that they hinge upon some beliefs about others’ behavior and assume 

expected profit-maximization. Following a recent forum on the modelling of strategic behavior 

(see Harstad and Selten, 2013, Crawford, 2013, and Rabin, 2013), we can identify three 

approaches to the modelling of bidding behavior in auctions with independent private values. 

The first assumes alternative specifications of bidders’ preferences and/or utilities while 

maintaining profit-maximization and belief-consistency, such as Constant Relative Risk 

Averse preferences (Cox, Smith and Walker, 1988, Chen and Plott, 1998, and Palfrey and 

Pevnitskaya, 2008), Quantal Response Equilibrium (Anderson, Goeree and Holt, 1998 and 

Goeree, Holt and Palfrey, 2002, and Armantier and Treich, 2009a) and different types of 

information-induced regret (Engelbrecht-Wiggans and Katok, 2007, 2008, Filiz and Ozbay, 

2007, and Phelps, 2008, Hyndman, Ozbay and Sujarittanonta, 2012, and Banerji and Gupta, 

2014). A second approach relaxes belief consistency to study non-equilibrium type of best-

responding behavior, such as rationalizability (Battigali and Siniscalchi, 2003), and level-k 

thinking (Crawford and Irriberi, 2007 and Kirchkamp and Reiβ, 2011). A third approach, which 

we will adopt here, substitutes the usual maximization of expected profits with the 

minimization of some loss function, as in Impulse Balance Equilibrium (Ockenfels and Selten, 

2005, and Neugebauer and Selten, 2006) and learning models (Saran and Serrano, 2014).1  

The novelty of our analysis is to assume that bidders have minimal beliefs about their 

competitors’ behavior and react, without best-responding, to the information available either 

by formulating payoff aspirations or by anticipating the possible regrets associated to the bids 

                                                           
1 We would include in this approach models that assume agents to have limited information and to obey simple 

rules-of-thumb which heterogeneity is controlled and which effects on aggregate behavior are monitored. Such 

agent-based models are commonly used to study complex systems and provide no normative predictions but 

document what may happen for particular parameter constellations (see Tesfatsion, 2006, for review of this 

literature in economics, and Andreoni and Miller, 1995, and Guerci, Kirman and Moulet, 2014, for applications 

to the study of auctions). 
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they submit. Our take builds on the presumption that bidders in real-world auctions do not 

engage in game-theoretic reasoning but use instead bidding rules that account for the 

information available and that allow them to achieve some objective. In auctions for perishables, 

for example, where commodities are often sold via descending-price auctions, the swiftness 

and multiplicity of transactions pose quite a challenge for rational expected profit-

maximization, especially if the necessary information is not available or vague, as it is often 

the case. We believe that in such circumstances, bidders are more likely to revert to ‘rule-of-

thumb’ type of strategies than to counterfactual, Bayes-Nash type of reasoning. To keep our 

framework comparable to the one of Vickrey, we shall assume that bidders know the number 

of competitors, how private values are generated, their own value realization, and that there is 

only one good for sale. With such information, we argue that anchoring ones bid to the highest 

(unknown) value of ones’ competitors is a plausible bidding rule if using it does not yield a 

loss. Such a rule would, for example, be relevant to bidders for whom losing an auction if they 

are in a position to win should be avoided.2 How bidders use this rule to determine their actual 

bidding strategies depends on the objective they pursue. We propose two alternative objectives 

to the traditional one of ‘expected profit-maximization’, each implying a distinct model. 

Our first model, AsP (for Aspired-Payoff) pertains to first-price auctions and is inspired from 

experiments conducted with professional bidders who were found to use, much like naïve 

student participants, markup-type of strategies rather than a rational expected profit-

maximizing one (see Burns, 1985, Dyer, Kagel and Levin, 1989, and Fréchette, 2011). The use 

of such strategies indicates that these professional bidders either did not adapt their real-world 

objectives to the laboratory environment or that they pursued some objective other than 

‘rational expected profit-maximization’, eventhough the necessary information to maximize 

expected profit was available. AsP assumes that bidders aim to achieve an aspired payoff which 

we define as the expected difference between ones’ value and the highest of the others’ 

(unknown) values, provided that it is smaller than ones’ value. This model is non-strategic, 

parameter-free, and generates a bidding strategy that shares properties of the Symmetric Bayes-

Nash Equilibrium (SBNE) strategy for risk neutral bidders but implies nonlinear overbidding. 

Our second model, nIBE (for naïve Impulse Balance Equilibrium), pertains to first-price, 

second-price and all-pay auctions, and assumes for objective a variant of Impulse Balance 

                                                           
2 See Laffont, Ossard and Vuong (1995), Pezanis-Christou (2000) and Salladaré, Guillotreau, Loisel and Ollivier 

(2017) for studies of descending-price auctions of eggplants, sardines and lobsters that are attended by wholesalers 

and/or retailers who display different bidding behaviors, some possibly driven by the use of such a bidding rule. 
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Equilibrium (Ockenfels and Selten, 2005) in which bidders act so as to equalize the expected 

impulses (or regrets) from winning with too high a bid and from losing with too low a bid. Like 

AsP, nIBE is non-strategic, and it is parameter-free if bidders equally weight these expected 

impulses. In this case, nIBE generates the SBNE bidding strategy for risk neutral bidders in 

first-price and all-pay auctions, and the usual weakly dominant strategy in second-price 

auctions. Overbidding (underbidding) results if bidders are more (less) responsive to losing 

than to winning, but this hold only fir the first-price and all-pay formats. Unlike Ockenfels and 

Selten (2005) who study ex-post information-induced regret, nIBE deals with ex-ante or 

anticipated regrets, as Engelbrecht-Wiggans (1989) and Filiz and Ozbay (2007), and its 

impulse balancing feature provides structure to study the effects of end-of-round information 

feedback on bids. 

We assess the models’ predictions with the data of several experiments on first-price and all-

pay auctions with two, four or six bidders and independent private values. Overall, we find that 

in terms of parameter-free models for first-price auctions, AsP outperforms nIBE (or 

equivalently SBNE) in explaining behavior in auctions with two bidders, and that the reverse 

holds when there are four bidders. Assuming nonlinear probability weighting or impulse 

weighting (when relevant) significantly improves the models’ goodness-of-fits. nIBE with 

impulse weighting also rationalizes the effect of information feedback on behavior better than 

nIBE (or SBNE or level-k) with a power form of probability weighting in first-price auctions, 

or than the Regret model of Hyndman, Ozbay and Sujarittanonta (2012) in all-pay auctions. 

The next section spells out our approach and discusses conditions for the auctions’ revenue 

equivalence. Section 2 reviews the data we use to assess the models’ explanatory powers and 

motivates the conjectures to be tested. Section 3 reports on the outcomes. Section 4 concludes. 

1. Two non-game-theoretic models of bidding 

We start with briefly reviewing the game-theoretic predictions for first-price and all-pay 

auctions. Assume 𝑛 ≥ 2 risk-neutral bidders who compete for the purchase of a commodity to 

be awarded to the highest bidder. Bidders’ values are identically and independently drawn from 

a commonly known distribution 𝐹 with density 𝑓 defined on (0, �̅�]. Bidders know their own 

value realization but not those of their 𝑛 − 1  competitors. Following the Bayes-Nash 

equilibrium argument, bidders maximize their expected utilities from winning the auction by 

assuming that they all use the same best-reply function. The SBNE bidding strategies for these 

auctions can then be determined via the revelation principle. In first-price auctions, SBNE 
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bidding reverts to submitting a bid that is equal to the expectation of the highest value 

realization of a sample of size 𝑛 − 1, 𝑦, conditional on ones’ value 𝑣 being the highest of all 

values. Denoting bidder 𝑖’s misperceived distribution of 𝑦 by 𝜙𝑖(𝐹(𝑦)𝑛−1) where 𝜙𝑖  stands 

for i’s Probability Weighting Function (PWF) and assuming that 𝜙𝑖 = 𝜙 for all 𝑖 = 1, … , 𝑛 is 

common knowledge, the SBNE strategy for a bidder with value 𝑣𝑖  is equal to the 𝜙 -

transformed expectation of the highest of 𝑛 − 1 values, 𝑌, given that 𝑌 < 𝑣𝑖 , 𝐸𝜙(𝑌|𝑌 < 𝑣𝑖), 

and takes the following expression: 

𝑏𝑁𝑎𝑠ℎ
𝐹𝑃 (𝑣𝑖, 𝜙) = 𝑣𝑖 − ∫

𝜙(𝐹(𝑦)𝑛−1)

𝜙(𝐹(𝑣𝑖)𝑛−1)

𝑣𝑖

0

𝑑𝑦. 

In all-pay auctions, where the highest bidder wins and all bidders pay their bids, following a 

same reasoning, it can be shown that the SBNE bidding strategy takes the following expression: 

𝑏𝑁𝑎𝑠ℎ
𝐴𝑃 (𝑣𝑖, 𝜙) = 𝑣𝑖𝜙(𝐹(𝑣𝑖)

𝑛−1) − ∫ 𝜙(𝐹(𝑦)𝑛−1)𝑑𝑦
𝑣𝑖

0

. 

Our approach presumes that bidders do not engage in the complex counterfactual reasoning 

that underlies the Bayes-Nash equilibrium strategy but use instead some bidding rule that 

accounts for the information available and allows them to achieve some objective. From the 

information available, i.e., the auction format, 𝐹, 𝑛, their respective values 𝑣𝑖  and PWF 𝜙𝑖 

(which are private information), we assume that bidders can infer i) that no bidder bids above 

her/his own value and ii) the misperceived distribution of the highest of the 𝑛 − 1 other value 

realizations, 𝜙𝑖(𝐹(𝑦)𝑛−1). Next, we assume that they adopt the logic of the weakly dominant 

strategy for ascending-price auctions to determine their bidding rule for first-price and all-pay 

auctions. That is, we assume that given i) and ii), bidders are prepared to bid up to the highest 

(unknown) value of their competitors, provided that doing so does not yield a loss. Such a 

bidding rule thus reverts to confining ones’ attention to that unknown competitor with the 

highest value draw 𝑦 (and who will never bid more than 𝑦), and to overlooking what the other 

competing bidders might do. In addition, and unlike the Bayes-Nash approach which assumes 

a common monotone increasing bidding function for bidding rule, our approach entails, via 𝑣𝑖 

and 𝜙𝑖, the definition of individual bidding rules. How bidders use these rules to determine 

their bidding strategies depends on the chased objective; the models presented below deal each 

with a different objective. 
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1.1. The Aspired-Payoff model (AsP) for First-Price auctions 

In this model, we assume that bidder 𝑖’s objective is to achieve an aspired profit, 𝜋𝐴𝑠𝑃(𝑣𝑖, 𝜙𝑖), 

that is essentially defined by the difference between the value 𝑣𝑖 and the highest (unknown) 

value draw of the 𝑛 − 1  other bidders, 𝑦 . Since bidder 𝑖  aspires to earn a positive profit, 

attention is confined to 𝑦 in [0, 𝑣𝑖] so 𝜋𝐴𝑠𝑃(𝑣𝑖 , 𝜙𝑖) = 𝐸𝜙𝑖
(𝑣𝑖 − 𝑌, 𝑌 < 𝑣𝑖) = 𝑣𝑖 − 𝐸𝜙𝑖

(𝑌 < 𝑣𝑖), 

or equivalently: 

𝜋𝐴𝑠𝑃(𝑣𝑖, 𝜙𝑖) = ∫ (𝑣𝑖 − 𝑦)
𝑣𝑖

0

𝑑𝜙𝑖(𝐹(𝑦)𝑛−1) =  ∫ 𝜙𝑖(𝐹(𝑦)𝑛−1)
𝑣𝑖

0

𝑑𝑦. 

Note that 𝜋𝐴𝑠𝑃  is entirely determined by the values’ statistical properties, 𝑛 and 𝜙𝑖 , and is 

independent of the bidder’s bid. Next, we define bidder 𝑖’s AsP bidding strategy, 𝑏𝐴𝑠𝑃(𝑣𝑖, 𝜙𝑖), 

as the one that equalizes the payoff to be made from winning, 𝑣𝑖 − 𝑏𝐴𝑠𝑃(𝑣𝑖, 𝜙𝑖) , to  

𝜋𝐴𝑠𝑃(𝑣𝑖 , 𝜙𝑖), so: 

𝑣𝑖 −  𝑏𝐴𝑠𝑃(𝑣𝑖, 𝜙𝑖) =  ∫ 𝜙𝑖(𝐹(𝑦)𝑛−1)
𝑣𝑖

0

𝑑𝑦 

𝑏𝐴𝑠𝑃(𝑣𝑖, 𝜙𝑖) = 𝑣𝑖 − ∫ 𝜙𝑖(𝐹(𝑦)𝑛−1)
𝑣𝑖

0

𝑑𝑦 ≡ 𝐸𝜙𝑖
(𝑌 < 𝑣𝑖). 

 

Thus, AsP bidding with probability misperception 𝜙𝑖  reverts to bidding the 𝜙𝑖-transformed 

expectation of the highest value of 𝑛 − 1 draws smaller than 𝑣𝑖. It differs from SBNE bidding 

in that the expectation of 𝑌 is not conditional on 𝑌 < 𝑣𝑖. This bidding strategy is monotone 

increasing in values, i.e., 𝜕𝑣𝑖
𝑏𝐴𝑠𝑃(𝑣𝑖, 𝜙𝑖) > 0 for all 𝑣𝑖 ∈ (0, 𝑣) and PWF 𝜙𝑖 , and it has the 

following properties: 

(i) If 𝜙𝑖 = 𝜙 for all 𝑖, then 𝑏𝐴𝑠𝑃(0, 𝜙) = 𝑏𝑁𝑎𝑠ℎ
𝐹𝑃 (0, 𝜙) and 𝑏𝐴𝑆𝑃(𝑣, 𝜙) = 𝑏𝑁𝑎𝑠ℎ

𝐹𝑃 (𝑣, 𝜙). 

(ii) If 𝜙𝑖 = 𝜙 for all 𝑖, then ∆= 𝑏𝐴𝑠𝑃(𝑣𝑖, 𝜙) − 𝑏𝑁𝑎𝑠ℎ
𝐹𝑃 (𝑣𝑖, 𝜙) converges to 0 as 𝑛 → ∞. 

(iii) In the absence of probability misperception, i.e., 𝜙𝑖(𝑝) = 𝑝, 𝑏𝐴𝑠𝑃(𝑣𝑖) is parameter-free 

and implies a nonlinear overbidding. This follows from the integral term in 𝑏𝐴𝑠𝑃(𝑣𝑖) 

being smaller than the one in 𝑏𝑁𝑎𝑠ℎ
𝐹𝑃 (𝑣𝑖) (which implies overbidding for all 𝑣𝑖 ∈ (0, 𝑣)) 

and from 𝜕𝑣𝑖𝑣𝑖

2  𝑏𝐴𝑠𝑃(𝑣𝑖) < 0 for all 𝑣𝑖 ∈ (0, 𝑣) (which implies concavity no matter 𝐹).  

Figure 1 illustrates the above properties by displaying AsP(𝛼) bidding strategies for two or four 

bidders with uniform values on [0,1] and a power PWF 𝜙(𝑝) = 𝑝𝛼 with 𝛼 = {0.4, 1, 2.5}. 
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FIGURE 1: ASP AND SBNE BIDDING STRATEGIES FOR FIRST-PRICE AUCTIONS. 

1.2. The naïve Impulse Balance Equilibrium model (nIBE) 

We start with sketching the logic of Impulse Balance Equilibrium (IBE) as presented in 

Ockenfels and Selten (2005, OS). IBE builds on Learning Direction Theory which predicts that 

from one round to another, bidders realize what would have been a better action in the last 

round and qualitatively adjust their bid correspondingly in the following round. OS refer to 

IBE as being the long-run (or stationary) outcome of these round-to-round adjustments. Thus, 

for any submitted bid 𝑥 , bidders receive an upward impulse from losing the auction that 

characterizes the ex-post regret of losing with too low a bid, or a downward impulse from 

winning the auction that characterizes the ex-post regret of winning with too high a bid. With 

𝐺(∙) standing for the distribution of the highest of the 𝑛 − 1 other bids, 𝑣𝑖  for the bidder’s 

value realization, and assuming no probability misperception, the expected upward and 

downward impulses are then respectively equal to: 

𝑈(𝑣𝑖 , 𝑥) = ∫ (𝑣𝑖 − 𝑧)𝑑𝐺(𝑧)
𝑣𝑖

𝑥

       and        𝐷(𝑣𝑖, 𝑥) = ∫ (𝑥 − 𝑧)𝑑𝐺(𝑧)
𝑥

0

 

In the IBE, 𝑥 solves 𝑈(𝑣𝑖, 𝑥) = 𝜆𝐷(𝑣𝑖, 𝑥), where 𝜆 stands for a common impulse weighting 

parameter.3 To solve the IBE, OS specify a linear relationship between values and bids so that 

the solution must be of the form 𝑥∗(𝑣𝑖) = 𝑎𝑣𝑖  with 𝑎 > 0 . This assumption defines a 

correspondence between 𝐺(∙) and the distribution of the highest of 𝑛 − 1 values, 𝐹(𝑦)𝑛−1, that 

is central to the determination of an IBE and that limits its scope to the analysis of auctions 

with uniformly drawn values. Our approach overcomes this limitation.  

                                                           
3 Actually, OS equalize the expectations of the impulses with respect to values so that 𝑏𝐼𝐵𝐸(𝑣) is the solution to 

∫ 𝑈(𝑣, 𝑥)𝑑𝑣 =
𝑣

0
𝜆 ∫ 𝐷(𝑣, 𝑥)𝑑𝑣

𝑣

0
, i.e., it is not solved for each value realization, like 𝑏𝑁𝑎𝑠ℎ

𝐹𝑃 (𝑣). 
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Another important difference between IBE and our naïve variant, nIBE, is that the latter 

postulates ex-ante reasoning so bidders are assumed to anticipate, rather than experience, the 

impulses to be received. This means that the determination of nIBE does not require repeated 

play and is a priori not affected by ex-post feedback. We call this variant of IBE ‘naïve’ because 

it involves virtually no assumption on others’ behavior and still assumes an impulse balancing 

logic. 

1.2.1. First-Price auctions 

Taking the standpoint of bidder 𝑖  with value 𝑣𝑖 , we define the anticipated upward and 

downward impulses in terms of the expected difference between bidder 𝑖’s bid, 𝑥, and the 

highest of the 𝑛 − 1 other values, 𝑦. Thus, bidder 𝑖 anticipates an upward impulse from losing 

the auction since this will trigger a regret of not having bid high enough, i.e., closer to 𝑦 < 𝑣𝑖, 

which is measured by the distance between 𝑦 (which is larger than 𝑥) and 𝑥. This expected 

upward impulse is defined for 𝑦 in [𝑥, 𝑣𝑖] and is equal to: 

𝑈𝑛(𝑣𝑖 , 𝑥, 𝜙𝑖) = ∫ (𝑦 − 𝑥)𝑑𝜙𝑖(𝐹(𝑦)𝑛−1)
𝑣𝑖

𝑥

 

= (𝑣𝑖 − 𝑥)𝜙𝑖(𝐹(𝑦)𝑛−1) − ∫ 𝜙𝑖(𝐹(𝑦)𝑛−1)
𝑣𝑖

0

𝑑𝑦. 

Similarly, bidder 𝑖 anticipates a downward impulse from winning since this will trigger a regret 

of having bid too high. This downward impulse is measured by the distance between the bid 𝑥 

which is larger than 𝑦) and 𝑦, and does not depend on 𝑣𝑖.
4 Its expected value for 𝑦 in [0, 𝑥] is 

equal to: 

𝐷𝑛(𝑥, 𝜙𝑖) = ∫ (𝑥 − 𝑦)𝑑𝜙𝑖(𝐹(𝑦)𝑛−1) = ∫ 𝜙𝑖(𝐹(𝑦)𝑛−1)𝑑𝑦
𝑥

0

𝑥

0

 

A bidder’s objective in nIBE is to find a bid 𝑥∗ that equalizes her/his expected impulses, i.e., 

𝑈𝑛(𝑣𝑖, 𝑥∗, 𝜙𝑖) =  𝜆𝐷𝑛(𝑥∗, 𝜙𝑖), where 𝜆 stands for an impulse weighting parameter. That is, 𝑥∗ 

solves the following implicit equation: 

𝑥∗ = 𝑣𝑖 −
∫ 𝜙𝑖(𝐹(𝑦)𝑛−1)𝑑𝑦

𝑣𝑖

0

𝜙𝑖(𝐹(𝑣𝑖)𝑛−1)
+ (1 − 𝜆)

∫ 𝜙𝑖(𝐹(𝑦)𝑛−1)𝑑𝑦
𝑥∗

0

𝜙𝑖(𝐹(𝑣𝑖)𝑛−1)
 

                                                           
4 The definitions of 𝑈𝑛(𝑣𝑖 , 𝑥, 𝜙𝑖) and 𝐷𝑛(𝑥, 𝜙𝑖) do not involve a ‘payoff’ so the assumption of constant absolute 

risk averse preferences does not suit nIBE. Assuming a non-Euclidian distance norm, however, could work as a 

proxy for nonlinear evaluations. 
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Solving this equation defines a bidding strategy 𝑏𝑛𝐼𝐵𝐸
𝐹𝑃 (𝑣𝑖, 𝜙𝑖) that is monotone increasing in 

𝑣𝑖 for all 𝜆 > 0 and PWF 𝜙𝑖 (see Appendix A) and that has the following properties: 

(i) If 𝜙𝑖 = 𝜙  for all 𝑖  and 𝜆 = 1 , then 𝑏𝑛𝐼𝐵𝐸
𝐹𝑃 (𝑣𝑖, 𝜙)  ≡ 𝑏𝑁𝑎𝑠ℎ

𝐹𝑃 (𝑣𝑖 , 𝜙)  and overbidding 

occurs if 𝜙  satisfies the ‘star-shaped’ condition 𝜙(𝑝) < 𝑝𝜙′(𝑝)  for 𝑝 ∈ (0,1) , see 

Armantier and Treich (2009b). 

(ii)       If 𝜙𝑖 = 𝜙 for all 𝑖, then ∆= 𝑏𝑛𝐼𝐵𝐸
𝐹𝑃 (𝑣𝑖, 𝜙) − 𝑏𝑁𝑎𝑠ℎ

𝐹𝑃 (𝑣𝑖, 𝜙) converges to 0 as 𝑛 → ∞. 

(iii) In the absence of probability misperception, 𝑏𝑛𝐼𝐵𝐸
𝐹 (𝑣𝑖)  implies overbidding 

(underbidding) for all 𝑣𝑖 ∈ (0, 𝑣)  if 𝜆 < 1  ( 𝜆 > 1 ). This follows from the term 

(1 − 𝜆) ∫ 𝐹(𝑦)𝑛−1𝑑𝑦
𝑏𝑛𝐼𝐵𝐸

𝐹𝑃 (𝑣𝑖)

0
/𝐹(𝑣𝑖)𝑛−1 being positive (negative) if 𝜆 < 1 (𝜆 > 1).  

Figure 2 illustrates the above properties when assuming uniformly distributed values on [0,1], 

two or four bidders, a power PWF 𝜙(𝑝) = 𝑝𝛼 with 𝛼 = {0.25, 1, 2.5} and 𝜆 = {0.50, 1}. Note 

that with uniformly drawn values, nIBE(𝛼; 1) is linear and equivalent to: (1) SBNE with a 

power PWF or with CRRA preferences, i.e., 𝑢(𝑤) = 𝑤𝑟 and 𝑟 = 1/𝛼 (see Pezanis-Christou 

and Romeu, 2018), (2) nIBE(1; 𝜆) with 𝜆 = 1/𝛼2 if 𝑛 = 2, and 𝜆 = 𝜉(𝛼) if 𝑛 = 4, and (3) 

level-k bidding with a power PWF and Random- or Truthful-L0 bidders.5 

 

FIGURE 2: nIBE AND SBNE BIDDING STRATEGIES FOR FIRST-PRICE AUCTIONS. 

1.2.2. All-pay auctions 

In all-pay auctions, the highest bidder wins and all bidders pay their bids. The bidder’s nIBE 

objective in an all-pay auction is the same as in a first-price auction and the determination of a 

nIBE strategy requires the same definitions of 𝑈𝑛(𝑣𝑖, 𝑥, 𝜙𝑖) and 𝐷𝑛(𝑥, 𝜙𝑖) but assumes an 

additional anticipated downward impulse, 𝐷1𝑛(𝑣𝑖 , 𝑥, 𝜙𝑖) , that characterizes the regret of 

                                                           
5 The function 𝜆 = 𝜉(𝛼)  has a convoluted expression and is not reported. The definition of level-k bidding 

strategies with nonlinear probability weighting directly follows from Crawford and Iriberri (2007). 
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having to pay ones bid upon losing. This downward impulse is measured by the expected 

distance between bidder 𝑖’s losing bid 𝑥 and the ‘no loss’ ex-post bid, 𝑣 (= 0), provided that 

the highest of the 𝑛 − 1 other values is in (𝑣𝑖, 𝑣], so: 

𝐷1𝑛(𝑣𝑖, 𝑥, 𝜙𝑖) = ∫ (𝑥 − 0)𝑑𝜙(𝐹(𝑦)𝑛−1
𝑣

𝑣𝑖

= 𝑥(1 − 𝜙(𝐹(𝑣𝑖)
𝑛−1) 

At nIBE, we thus have 𝑈𝑛(𝑣𝑖 , 𝑥∗, 𝜙𝑖) = 𝜆[𝐷𝑛(𝑥∗, 𝜙𝑖) + 𝐷1𝑛(𝑣𝑖, 𝑥∗, 𝜙𝑖)] and the solution 𝑥∗ 

solves the following implicit equation:6  

𝑥∗ =
𝑣𝑖𝜙𝑖(𝐹(𝑣𝑖)𝑛−1) − ∫ 𝜙𝑖(𝐹(𝑦)𝑛−1)𝑑𝑦 + (1 − 𝜆) ∫ 𝜙𝑖(𝐹(𝑦)𝑛−1)𝑑𝑦

𝑥∗

0

𝑣𝑖

0

𝜙𝑖(𝐹(𝑣𝑖)𝑛−1) + 𝜆[1 − 𝜙𝑖(𝐹(𝑣𝑖)𝑛−1)]
 

Solving this equation defines a bidding strategy 𝑏𝑛𝐼𝐵𝐸
𝐴𝑃 (𝑣𝑖, 𝜙𝑖) that is monotone increasing in 

𝑣𝑖 for all 𝜆 > 0 and PWF 𝜙𝑖 (see Appendix A), and has the following properties: 

(i) If 𝜙𝑖 = 𝜙  for all 𝑖  and if 𝜆 = 1 , then 𝑏𝑛𝐼𝐵𝐸
𝐴𝑃 (𝑣𝑖, 𝜙) ≡ 𝑏𝑁𝑎𝑠ℎ

𝐴𝑃 (𝑣𝑖, 𝜙)  and overbidding 

occurs if, for all 𝑣𝑖 ∈ (0, 𝑣), 

 𝑣𝑖 >
∫ 𝜙(𝐹(𝑦)𝑛−1)𝑑𝑦

𝑣𝑖

0
− ∫ 𝐹(𝑦)𝑛−1𝑑𝑦

𝑣𝑖

0

𝜙(𝐹(𝑣𝑖)𝑛−1) − 𝐹(𝑣𝑖)𝑛−1
 

 

(ii)       If 𝜙𝑖 = 𝜙 for all 𝑖, then ∆= 𝑏𝑛𝐼𝐵𝐸
𝐴𝑃 (𝑣𝑖, 𝜙)  − 𝑏𝑁𝑎𝑠ℎ

𝐴𝑃 (𝑣𝑖, 𝜙) converges to 0 as 𝑛 → ∞.  

(iii) In the absence of probability misperception, 𝑏𝑛𝐼𝐵𝐸
𝐴𝑃 (𝑣𝑖)  implies overbidding 

(underbidding) if 𝜆 < 1 (𝜆 > 1). This follows from the sign of ∆ at 𝜆 < 1 (𝜆 > 1). 

Figure 3 displays examples of nIBE bidding strategies in all-pay auctions with two or four 

bidders, uniform values on [0,1] and the same values for 𝛼 and 𝜆 as in Figure 2. Note that since 

the nIBE argument for all-pay and first-price auctions only differs in terms of the downward 

impulse 𝐷1𝑛, it follows that the nonlinear shape of these bidding strategies is entirely due to 

this anticipated regret.7 

 

                                                           
6 We study the combined effect of 𝐷𝑛 and 𝐷1𝑛 rather than their separate effects to streamline the presentation.   
7 We also note that level-k with either Random- or Truthful-L0 bidders does not provide a useful framework for 

the analysis of all-pay auctions with independent private values. In either case, a L1 bidder’s expected profit from 

bidding 𝑏 is equal to 𝑣 𝐹(𝑏)𝛼(𝑛−1) − 𝑏, and solving its first-order condition in 𝑏 yields a monotone decreasing 

bidding function in 𝑣 if 𝛼 ≠ 1/(𝑛 − 1) and an indeterminacy if 𝛼 = 1/(𝑛 − 1). 
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FIGURE 3: nIBE AND SBNE BIDDING STRATEGIES FOR ALL-PAY AUCTIONS. 

1.2.3. Other common auction formats 

Our approach extends to the analysis of second-price auctions but is hampered by the fact that, 

unlike in the pay-your-bid auctions studied above, winners pay the highest losing bid. This 

allocation rule interferes with the definition of a bidding rule (which invokes the definition of 

an upper limit to ones bids) and it prevents the definition of an aspired payoff for AsP (which 

is independent of ones’ or others’ bids). However, the determination of a nIBE bidding strategy 

can be achieved by simply acknowledging the existence of such an upper bid limit, without 

specifying and/or assuming how it relates to the distribution of values 𝐹.  

To see this, assume that bidder 𝑖 bids 𝑥 = 𝑣𝑖. In this case, s/he cannot anticipate a regret of 

losing the auction with too low a bid since by increasing 𝑥, s/he can only earn a non-positive 

profit. Therefore, the upward expected impulse is equal to zero. Likewise, s/he cannot 

anticipate a regret of winning with too high a bid since ‘winning’ would imply 𝑣𝑖 = 𝑥 > 𝑝, 

where 𝑝 stands for the highest losing bid, so that decreasing 𝑥 cannot possibly increase her/his 

profit (and may result in losing the auction). Therefore, the downward expected impulse is also 

equal to zero. Thus, by bidding 𝑥 = 𝑣𝑖, the expected upward and downward impulses are equal 

(to 0) and define a nIBE solution. 

Assume now that bidder 𝑖 underbids, so 𝑥 < 𝑣𝑖. In this case, s/he anticipates a regret of having 

bid too low if 𝑥 ≤ 𝑝 < 𝑣𝑖 since by bidding 𝑥 ∈ (𝑝, 𝑣𝑖), s/he could expect to earn a positive 

payoff. Although the exact probability of observing 𝑝 ∈ (𝑥, 𝑣𝑖) is unknown, which prevents 

the determination of bidder 𝑖’s expected upward impulse, it suffice to observe that since this 

probability is positive, the expected upward impulse will be positive. On the other hand, s/he 

anticipates no regret from winning with too high a bid since ‘winning’ would mean 𝑥 ≥ 𝑝, so 

that decreasing 𝑥  cannot increase her/his payoff (and may result in losing the auction). 
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Therefore, it is impossible to define a nIBE (under-)bid 𝑥∗ < 𝑣𝑖  that equalizes a positive 

expected upward impulse to zero.  

A similar logic applies when bidder 𝑖 overbids, so 𝑥 > 𝑣𝑖. In this case, s/he anticipates no regret 

from losing with too low a bid since ‘losing’ means 𝑣𝑖 < 𝑥 ≤ 𝑝 so that increasing 𝑥 can only 

earn her/him a non-positive profit upon winning, i.e., her/his expected upward impulse is zero. 

On the other hand, s/he anticipates a regret from winning with too high a bid if 𝑝 > 𝑣𝑖. In this 

case, s/he would want to decrease 𝑥 below 𝑝 to eliminate the incurred loss. Again, it suffices 

to observe that the probability of observing 𝑝 > 𝑣𝑖  is positive, which implies a positive 

expected downward impulse. As a result, we cannot define a (over-)bid 𝑥∗ > 𝑣𝑖 that solves the 

nIBE condition. 

In sum, a nIBE equilibrium for the second-price auction format exists only if bidders use their 

weakly dominant strategy of bidding their own values. Note that unlike the pay-your-bid 

auctions studied above, nIBE is insensitive to impulse weighting and therefore cannot 

rationalize the overbidding observed in numerous experiments (see Kagel, 2014 and Coopers 

and Fang, 2011).  

In ascending-price auctions, the proposed bidding rule directly translates into staying active in 

an ascending-price auction as long as the current price does not exceed ones’ value. Therefore, 

both AsP and nIBE yield the Nash equilibrium prediction for ascending-price auctions. 

In descending-price auctions, the price is decreased over time until one of the bidders chooses 

to buy. The bidders’ dilemma therefore consists in choosing the lowest price at which to buy 

given that doing so bears the risk of being outbid by a competitor. If we discard the time feature 

of this format, it comes clear that descending- and first-price auctions are isomorphic and that 

applying the bidding rule generates identical AsP or nIBE bidding strategies.8 

1.3. Revenue equivalence for 𝒏IBE bidders 

We compare the seller’s expected revenues from ascending-price, first-price and all-pay 

auctions when assuming nIBE bidders. Clearly, if 𝜆 = 1 then the nIBE strategies for first-price, 

descending-price and all-pay auctions coincide with the SBNE ones without probability 

misperception so the revenue equivalence of these formats holds. Further, when compared to 

                                                           
8 See Katok and Kwasnica (2008) who find evidence that the clock’s speed inversely affects the seller’s expected 

revenues in descending-price auctions, which suggests that the strategic isomorphism of these format does not 

hold when the clock’s speed is taking in to account. 
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the expected revenue of an ascending-price auction, which is equal to the expectation of the 

sample’s second-highest value and is invariant to nonlinear probability weighting, first-price 

auctions are revenue superior when 𝜙 satisfies the ‘star-shaped’ condition (cf. property (i) of 

𝑏𝑛𝐼𝐵𝐸
𝐹𝑃 (𝑣𝑖, 𝜙𝑖) ), and all-pay auctions are revenue superior if the condition to observe 

overbidding in all-pay auctions is fulfilled (cf. property (i) of  𝑏𝑛𝐼𝐵𝐸
𝐴𝑃 (𝑣𝑖, 𝜙𝑖)). 

 

FIGURE 4: nIBE EXPECTED REVENUE DIFFERENCES. 

The nIBE strategies for first-price and all-pay auctions typically have no closed-form solutions 

for 𝜆 ≠ 1  so the seller’s expected revenues can only be studied for specific cases. These 

revenues are determined by the expected payment of the highest valued bidder in first-price 

auctions, and by summing the expected payments of the 𝑛 bidders in all-pay auctions. Figure 

4 displays the expected revenue differences (∆) between (1) first-price and all-pay auctions 
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(upper panel), (2) first-price and ascending-price auctions (mid panel) and (3) all-pay and 

ascending-price auctions (lower panel), assuming uniform values on [0,1] , 𝑛 = {2,4}  and 

𝜙(𝑝) = 𝑝𝛼. The plots also report the (𝛼, 𝜆)-constellations for which both formats are revenue 

equivalent (i.e., dark surfaces) and indicate that (i) first-price auctions usually are revenue 

superior to ascending-price and all-pay auctions and (ii) all-pay auctions usually are revenue 

superior to ascending-price auctions if 𝜆 < 1 and 𝑛 = 2. 

2. Applications 

2.1. Data 

We estimate our models with the data of four experiments on first-price auctions (Katuščak, 

Michelucci and Zajíček, KMZ, 2015, Filiz and Ozbay, FO, 2004, Ockenfels and Selten, OS, 

2005, and Isaac and Walker, IW, 1985) and two experiments on all-pay auctions (Hyndman, 

Ozbay and Sujarittanonta, HOS, 2012, and Noussair and Silver, NS, 2006). The protocols of 

these experiments differ in many aspects (e.g., auction format, number of bidders, end-of-round 

information feedback, matching protocols and number of periods played) but they share 

common features in terms of the number of bidders and the end-of-round information feedback 

that allow some comparisons. Our goal here is to assess the models’ explanatory powers in a 

variety of related contexts, focussing on the auction format (first-price vs all-pay), the number 

of bidders (𝑛 = 2  vs 𝑛 = {4,6}), the end-of round feedback (see below) and whether the 

auction is repeated or not (one-shot vs repeated). 

KMZ and FO study one-shot first-price auctions and control for the information feedback 

and/or the number of bidders (𝑛 = {2,4}). These experiments let participants play only once to 

prevent confounding effects from repeated play and use the strategy method to collect more  

data: participants in KMZ (FO) were asked to submit a bid for each of six (ten) hypothetical 

values knowing that only one of the (value, bid)-pairs will be randomly selected and 

implemented. KMZ also report on treatments with a participant bidding against a SBNE robot, 

as well as on treatments replicating FO’s design. In these studies, winning or losing bids were 

disclosed to bidders depending on them winning or losing the auction. In one treatment (MF 

for Minimal Feedback) participants were only informed about the win/lose outcome of the 

auction and the winner knew the profit made. In another treatment (LF for Losers’ Feedback) 
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the winning bid was disclosed to losers whereas in a WF treatment (for Winner’s Feedback) 

the second highest bid was disclosed to the winner.9  

OS, IW, HOS and NS deal with first-price and all-pay repeated auctions. OS study two-bidder 

first-price auctions where participants bid in five consecutive auctions (days) with the same 

value realisation and different competitors before getting a new realisation for the next five 

auctions (week). This protocol was repeated for 28 weeks. IW study first-price auctions with 

four bidders who played for 25 rounds in fixed groups. OS and IW study similar end-of-round 

feedback treatments, namely LF and FF (for Full Feedback, where the full array of bids is 

disclosed). In IW the identification of bidders was also disclosed, hence the use of labels LF* 

and FF*. HOS study two-bidder all-pay auctions with either Minimal or Losers’ Feedback, MF 

or LF, whereas NS study all-pay auctions with six bidders and Minimal Feedback. Overall, at 

the exception of NS, these studies conjecture higher bids in LF-type of treatments than in WF 

(cf. KMZ and FO), MF (cf. KMZ, FO and HOS) or FF (cf. OS and IW). The main features of 

these experiments are summarized in Table 1. 

TABLE 1: SUMMARY OF EXPERIMENTAL DESIGNS. 
 

Dataset 
# Bidders  

(𝑛) 
Format Treatments 

# Groups 

/Treatment 

# Rounds 

/Group 

# Obs. 

(Total) 

# Subjects 

/Treatment 

One-shot auctions       

       

KMZ 2Ca 

First-Price 

MF, LF, WF 72, 72, 72 1 1296 72, 72, 72 

KMZ 2 MF, LF, WF 36, 36, 36 1 1296 72, 72, 72 

KMZ 4 MF, LF  12, 12 1 576 48, 48 

KMZ 4Rb MF, LF  12, 12 1 960 48, 48 

FO 4 MF, LF,WF 7, 8, 9 1 960 28, 32, 36 

       

Repeated auctions       

        

OS 2 
First-Price 

FF, LF 8, 8 5x28 13440 48, 48 

IW 4 FF*, LF* 10, 10 25 1988 40, 40 

        

HOS 2 
All-Pay 

 

MF, LF 4, 4 20 2400 62, 58 

NS 6 MF 4 25 600 24 

 
Note: KMZ: Katuščak, Michelucci and Zajíček (2015), FO: Filiz and Ozbay (2004), OS: Ockenfels and Selten (2005), 

IW: Isaac and Walker (1985), HOS: Hyndman, Ozbay and Sujarittanonta (2012), NS: Noussair and Silver (2006); The 

data of IW/FF lacks 12 observations or 3 rounds of play; Our analysis is based on the data of sessions 2, 3, 4 and 5 of NS; 

the data of session 1 being unavailable; a: One human bidder versus one Nash robot bidder; b: Replication of FO’s design. 

 

 

                                                           
9 To minimize the use of acronyms, we rename treatments with the same information feedback from different 

experiments with standardised labels, see Appendix B for the list of original and re-labelled treatment names.  
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2.2. Conjectures 

Our first conjecture relates to the explanatory power of the parameter-free variants of the SBNE, 

AsP and nIBE models for first-price auctions. Since nIBE and SBNE yield the same bidding 

strategy whereas AsP predicts a nonlinear overbidding (cf. property (iii)) that converges to 

SBNE bidding as the number of bidders grows large (cf. property (ii)), we conjecture: 

CONJECTURE 1: In terms of parameter-free models for first-price auctions, AsP explains 

the observed behavior better than nIBE or SBNE, especially when the number of bidders 

is small. 

Our second conjecture deals with nIBE’s ability to rationalize the effects of end-of-round 

information feedback on bidders’ anticipated regrets and behavior. Note first that while 

nonlinear probability weighting may improve a model’s goodness-of-fit, it cannot rationalize 

the effects of end-of-round feedback on bidding so we focus attention on the role of impulse 

weighting. For this, we treat the announcement of the end-of-round feedback as a new bit of 

information to be processed, and we determine how it may affect nIBE bids that were 

determined before the announcement was made, i.e., as in Sections 1.2.1 and 1.2.2. Consider 

first the FF treatments of OS and IW where bidders receive full-information feedback. Such a 

feedback can be seen as being symmetric because its announcement stimulates both types of 

anticipated regrets: no matter the outcome, bidders will access the information needed to 

anticipate both types of regrets. This holds for the MF feedback which announcement 

unstimulates both anticipated regrets: the winner will not know the second highest bid and 

losers will not know the winning bid. Therefore, taking for reference the context in which 

bidders are asked to bid under the veil of ignorance about the end-of-round information 

feedback, we conjecture that the announcement of a symmetric feedback to nIBE bidders will 

trigger no adjustment of their bids. By contrast, the LF and WF treatments can be seen as being 

asymmetric because their announcement stimulates only one type of anticipated regret. In the 

LF condition, we thus conjecture that nIBE bidders address the stimulated losers’ regret (or 

upward impulse) by adjusting their nIBE bids upwards which will translate into a downward 

correction of the parameter 𝜆 . Similarly, we conjecture that the announcement of a WF 

feedback will stimulate the Winner’s regret and nudge bidders towards decreasing their bids 

which will translate into an upward correction of the impulse parameter. This leads us to 

conjecture the following about the relative aggregate effect of a Losers’ Feedback on behavior. 
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CONJECTURE 2: The estimated impulse weighting parameter of nIBE indicates higher bids 

in Losers’ Feedback treatments than in treatments with a symmetric or a Winners’ 

Feedback, no matter if the auction is of the first-price or all-pay format. 

Note that this conjecture does not contradict Bergmann and Hörner (2018) who predict 

lower equilibrium bids in FF than in MF or LF if bidders’ values and competitors do not 

change over time. As these assumptions are not simultaneously fulfilled here, it remains 

unclear (as the authors observe) if these low equilibrium bid predictions hold in the above 

experiments. 

2.3. Procedures 

We analyse the data of each treatment of each experiment separately and we compare the 

models’ goodness-of-fits to that of the SBNE model which also has a parameter-free variant 

and is commonly used for the analysis of field auction data (see e.g., Paarsch and Hong, 2006). 

As AsP and nIBE assume no best-responding behavior and no profit maximisation, they do not 

suit a QRE-type of modelling so we focus analysis on the comparison of models that generate 

point-predictions. 

We conduct our analysis assuming a power PWF 𝜙(𝑝) = 𝑝𝛼 with 𝛼 > 0 since it yields closed-

form bidding strategies, and we estimate our models with nonlinear least squares. Also, as 

participants in these experiments were not allowed to bid more than 𝑣, we standardize bids and 

values to the unit interval to facilitate eventual comparisons. 

The estimation equations of the bidding strategies directly obtain from their expressions in 

Section 1 and are reported in Table 2. In addition to SBNE, AsP and nIBE, we report the 

predictions of FO’s model for first-price auctions with a Losers’ feedback, and of the ex-post 

regret model of HOS for all-pay auctions. Since FO’s model (for first-price auctions) with a 

linear ‘losers’ regret function’ (cf. 𝑔(𝑥) = 𝛽𝑥 in Table 2) generates linear bidding strategies 

when values are uniformly drawn, like SBNE and nIBE, its estimation would provide no 

additional insight and is therefore not undertaken. As for the parametric variants of AsP and 

nIBE, we estimate constrained versions with either no impulse weight (𝜆 = 1) or with no 

probability misperception (𝛼 = 1) to best assess the separate effects of each trait. This also 

alleviates the identification problem encountered when attempting to estimate both parameters 

simultaneously. In what follows, we will refer to these models as in nIBE(𝛼, 1) and nIBE(1, 𝜆), 

respectively, and since they both yield linear bidding strategies for the first-price auction format 

when values are uniformly drawn, they have equivalent goodness-of-fit capabilities.  
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TABLE 2: NOR AND nIBE BIDDING STRATEGIES FOR FIRST-PRICE AND ALL-PAY AUCTIONS. 

 Regret(�̂�)# AsP(�̂�) nIBE(�̂�; 1) nIBE(1; �̂�) 

First-Price 

    

LF, with 𝑔(𝑥) = 𝛽𝑥   𝑛 = 2 

    

(𝛽 + 1)(𝑛 − 1)

𝛽(𝑛 − 1) + 𝑛
𝑣 𝑣 −

𝑣𝛼(𝑛−1)+1

1 + 𝛼(𝑛 − 1)
 

𝛼(𝑛 − 1)

𝛼(𝑛 − 1) + 1
𝑣 

1

1 + √𝜆
𝑣 

    

WF   𝑛 = 4 

    

n.a.  

(predicts underbidding) 

  1

2
(√𝒜 − √8(√𝒜)

−1/2
− 𝒜) 𝑣 

with 𝒜 = 2(1 − 𝜆)−
2

3 [(1 + √𝜆)
1

3 + (1 − √𝜆)
1

3] 

All-Pay 

    

𝑀𝐹   𝑛 = 2, 𝜆 = 1 

    

(𝑛 − 1)𝑣𝑛

𝑛(1 + 𝛽) − 𝑛𝛽𝑣𝑛−1
 n.a. 

𝛼(𝑛 − 1)𝑣𝛼(𝑛−1)+1

𝛼(𝑛 − 1) + 1
 

𝑣2

2
 

    

𝐿𝐹, 𝑛 = 2   𝑛 = 2, 𝜆 ≠ 1 

    
(1 + 𝛽)2{Ln(1 + 𝛽) − Ln(1 + 𝛽 − 𝛽𝑣)}

𝛽2  

−
𝑣(1 + 𝛽)

𝛽
 

 

  
𝑣 −

𝜆 − √𝜆√2𝑣 − 𝑣2 + 𝜆 − 2𝜆𝑣 + 𝜆𝑣2

𝜆 − 1
 

   

  𝑛 = 6 

   

  no closed-form expression 

    

Note: All bidding strategies assume uniformly drawn values on [0,1] and are estimated with a Gaussian error term; #: ‘Loser regret’ Model of FO for first-

price auctions and HOS model for all-pay auctions.  
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TABLE 3: ESTIMATION OUTCOMES FOR ONE-SHOT FIRST-PRICE AUCTIONS. 

 
  Parameter-free  Parametric models 

Data 
Treatment 

(# Obs. | # Ind.) 
AsP 

nIBE or 

SBNE 
 AsP(�̂�) 

nIBE(�̂�, 1) 

or SBNE(�̂�) 
nIBE(1, �̂�) 

KMZ (2C) 

𝑛 = 2 

MF 

(432 | 72) 

 

 

319.8 

 

 

207.6 

 1.376 

[1.285, 1.467] 

361.3*** 

2.405 

[2.344, 2.575] 

427.0*** 

.173 

[.148, .197] 

427.0*** 

 
LF 

(432 | 72) 

 

 

407.0 

 

 

271.85 

 1.295 

[1.226, 1.364] 

448.4*** 

2.240 

[2.127, 2.353] 

561.8*** 

.199 

[.179, .219] 

561.8*** 

 
WF 

(432 | 72) 

 

 

305.9 

 

 

200.2 

 1.402 

[1.306, 1.498] 

349.1*** 

2.462 

[2.285, 2.640] 

424.5*** 

.165 

[.141, .189] 

424.5*** 

KMZ 

𝑛 = 2 

MF 

(432 | 72) 

 

 

332.4 

 

 

221.8 

 1.280 

[1.196, 1.363] 

358.5** 

2.205 

[2.044, 2.365] 

401.6*** 

.206 

[.176, .236] 

401.6*** 

 
LF 

(432 | 72) 

 

 

384.9 

 

 

264.5 

 1.229 

[1.159, 1.300] 

408.3** 

2.107 

[1.980, 2.235] 

472.9*** 

.225 

[.198, .252] 

472.9*** 

 
WF 

(432 | 72) 

 

 

352.6 

 

 

236.3 

 1.289 

[1.209, 1.368] 

383.0*** 

2.222 

[2.074, 2.369] 

442.5*** 

.203 

[.176, .229] 

442.5*** 

KMZ 

𝑛 = 4 

MF 

(288 | 48) 

 

 

190.8 

 

 

258.9 

 .568 

[.515, .621] 

230.5*** 

1.032▫ 

[.921,1.143] 

259.1 

.929▫ 

[.693, 1.164] 

259.1 

 
LF 

(288 | 48) 

 

 

252.2 

 

 

338.0 

 .660 

[.604, .716] 

279.6** 

1.217 

[1.112, 1.321] 

348.9** 

.632 

[.506, .757] 

348.9** 

KMZ (4R) 

𝑛 = 4 

MF 

(480 | 48) 

 

 

221.0 

 

 

266.2 

 .742 

[.652, .832] 

228.0** 

1.397 

[1.203,1.591] 

279.5** 

.460 

[.314,.605] 

279.5** 

 
LF 

(480 | 48) 

 

 

310.3 

 

 

360.3 

 .760 

[.683, .838] 

318.9** 

1.443 

[1.279, 1.607] 

384.0** 

.427 

[.317, .538] 

384.0** 

 

FO 

𝑛 = 4 

MF 

(280 | 28) 

 

 

213.0 

 

 

269.6 

 .677 

[.604, .751] 

227.8** 

1.256 

[1.112, 1.399] 

278.0** 

.587 

[.433, .742] 

278.0** 

 
LF 

(360 | 36) 

 

 

430.8 

 

 

362.8 

 1.420 

[1.263, 1.577] 

449.4** 

2.524 

[2.306, 2.742] 

584.1*** 

.124 

[.101, .147] 

584.1*** 

 
WF 

(320 | 32) 

 

 

172.6 

 

 

237.7 

 .602 

[.532, .672] 

192.6** 

1.107▫ 

[.966, 1.248] 

238.7 

.787▫ 

[.552, 1.023] 

238.7 

Note: Log-likelihood statistics in italics; Bold figures indicate highest log-likelihood statistic for a given category 

(‘Parameter-free’ or ‘Parametric’); ▫: Not significantly different from 1 at 𝛼 = 5%. 
 

3. Results 

3.1. First-Price auctions 

Table 3 reports the estimation outcomes for the data of KMZ and FO on one-shot auctions. In 

terms of parameter-free models, AsP outperforms nIBE or SBNE in all treatments with two 

bidders, no matter the information feedback or whether the competitor is human or a SBNE 

robot. The reverse holds in all treatments with four bidders except FO/LF. Overall, this is in 
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line with CONJECTURE 1. Adding a parameter improves the models’ goodness-of-fit (according 

to likelihood ratio tests) and makes of nIBE(�̂�, 1), or equivalently nIBE(1, �̂�), the best fitting 

model in both KMZ and FO. Thus, behavior in these experiments is mostly linear in values and 

AsP’s better performance as a parameter-free model only results from its nonlinear overbidding 

prediction. 

As for the possible effects of information feedback, cross-treatment comparisons of the 95% 

confidence intervals of nIBE’s �̂�-estimates indicate no significant difference, except for FO/LF 

which reports significantly higher bids. Thus, behavior in one-shot first-price auctions largely 

seems to be invariant to the feedback provided, which corroborates the findings of KMZ and 

Ratan (2016) and suggests that CONJECTURE 2 is not borne by the data of one-shot auctions. 

Table 4 reports the estimation results for the repeated auctions of OS and IW. In terms of 

parameter-free models, AsP usually outperforms nIBE or SBNE, which in line with 

CONJECTURE 1. Adding a parameter significantly improves goodness-of-fit and suggests that 

AsP(�̂�) explains best the data of OS whereas nIBE(�̂�, 1) or nIBE(1, �̂�) explains best the one of 

IW. The estimates’ 95% confidence intervals also indicate significant differences across 

feedback treatments which, in terms of impulse weighting, supports CONJECTURE 2. The 

estimated bidding functions for these experiments are displayed in Figure 5. 

Accounting for heterogeneous traits confirms our findings and further improves goodness-of-

fit, although this is not significant according to likelihood ratio tests, cf. right-hand panel of 

Table 4. In both experiments, the means and medians of �̂�-estimates indicate that overbidding 

is most salient in LF-treatments. This is confirmed by one-tailed Fisher-Pitman randomization 

tests which reject the null of stochastically equivalent samples of individual estimates of the 

LF and FF treatments against the alternative that those of LF-treatments generate more 

overbidding than those of FF-treatments (p-values: .0231 () and .0000 () in OS; .0002 () 

and .0066 () in IW), which is in line with CONJECTURE 2. 

Table 5 reports on likelihood ratio tests that were conducted at the individual level. The figures 

confirm that adding a parameter to (parameter-free) AsP or nIBE significantly improves the 

model’s goodness-of-fit for most participants: AsP(�̂�𝑖) does so for 90% (58%) of them in OS 

(IW) whereas nIBE(1, �̂�𝑖) or nIBE(�̂�, 1) does so for 83% (73%) in IW (OS). They also indicate 

that AsP(�̂�𝑖 ) generates a better fit than nIBE(1, �̂�𝑖 ) or nIBE(�̂�𝑖 , 1) for about two-thirds of 

participants in OS (with 𝑛 = 2) whereas this holds for only one-third of participants in IW 

(with 𝑛 = 4). 
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TABLE 4: ESTIMATION OUTCOMES FOR REPEATED FIRST-PRICE AUCTIONS. 

    Parametric models 

  Parameter-free  Homogenous  Heterogeneous 

Data 
Treatment 

(# Obs. | # Ind.) 
AsP 

nIBE or 

SBNE 
 AsP(�̂�) 

nIBE(𝛼,̂ 1) 

or SBNE(�̂�) 
nIBE(1, �̂�)  AsP(�̂�𝑖) nIBE(�̂�𝑖 , 1) nIBE(1, �̂�𝑖) 

 

OS 

 

𝑛 = 2 

LF 

(6720 | 48) 

 

 

 

6770.8 

 

 

 

6020.2 

  

.838 

[.828, .848] 

7156.8*** 

 

1.368 

[1.348, 1.388] 

6815.3*** 

 

.534 

[.519, .550] 

6815.3*** 

 [.67, .77, .96] 

‹1.783› 

 (6.483) 

9194.5 

[1.06, 1.30, 1.61] 

‹2.763› 

 (9.292) 

8687.8 

[.39, .59, .89] 

‹.648› 

 (.360) 

8687.8 

FF 

(6720 | 48) 

 

 

5278.0 

 

 

6797.6 

  

.631 

[.623, .638] 

7410.0*** 

 

.966 

[.952, .980] 

6808.4** 

 

1.071 

[1.040, 1.102] 

6808.4** 

 [.50, .63, .77] 

‹.687› 

 (.345) 

9280.5 

[.75, .95, 1.16] 

‹1.147› 

 (1.002) 

8429.7 

[.74, 1.11, 1.78] 

‹1.327› 

 (.878) 

8429.7 

 

IW 

 

𝑛 = 4 

LF* 

(1000 | 40) 

 

 

1192.7 

 

 

851.31 

  

 1.104  

[1.043, 1.165] 

1198.8* 

 

2.540 

[2.340, 2.740] 

1212.4*** 

 

.122 

[.101, .143] 

1212.4*** 

 [.81, 1.11, 1.66] 

‹1.715› 

 (2.366) 

1361.5 

[1.77, 2.64, 4.83] 

‹5.061› 

 (2.840) 

1368.4 

[.03, .12, .27] 

‹.207› 

 (.287) 

1368.4 

FF* 

(988 | 40) 

 

 

1221.2 

 

 

1120.2 

  

.835 

[.800, .870] 

1248.1** 

 

1.714 

[1.627, 1.801] 

1358.1*** 

 

.290 

[.257, .322] 

1358.1*** 

 [.65, .87, 1.13] 

‹.912› 

 (.335) 

1401.1 

[1.35, 1.88, 2.45] 

‹2.092› 

 (1.147) 

1563.1 

[.13, .23, .47] 

‹.450› 

 (.572) 

1563.1 

Note: Log-likelihood statistics in italics; Bold figures indicate the highest log-likelihood statistic within a category (‘Parameter-free’, ‘Homogenous’ or ‘Heterogeneous’); 
***: likelihood ratio test rejects the null that the augmented model is equivalent to the parameter-free one in terms of goodness-of-fit at 𝛼 = 1%; **: 5%; *: 10%. 
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Note: The plots of OS data display only 50% of all observations; [*] characterizes the model with the best goodness-of-fit. 

 

FIGURE 5: ESTIMATED ASP AND nIBE BIDDING FUNCTIONS FOR FIRST-PRICE AUCTIONS. 

 

 

 TABLE 5: ‘BEST’ MODEL FOR INDIVIDUALS: FIRST-PRICE AUCTIONS 
 

  Likelihood ratio tests a  Parameter-free  Heterogeneous 

  
𝐻𝑁𝑜𝑅 𝐻𝑛𝐼𝐵𝐸   NoR 

nIBE or 

SBNE 
 NoR(�̂�𝑖) nIBE(1, �̂�𝑖) 

          

OS 

𝑛 = 2 

LF 

(48) 

43 

89.5% 

35 

72.9% 

 26 

54.2% 

22 

45.8% 

 29 

60.4% 

19 

39.6% 

 

FF 

(48) 

 

46 

95.6% 

 

35 

72.9% 

  

11 

22.9% 

 

37 

77.1% 

  

35 

72.9% 

 

13 

27.1% 

          

IW 

𝑛 = 4 

LF* 

(40) 

25 

62.5% 

35 

87.5% 

 36 

90.0% 

4 

10.0% 

 17 

42.5% 

23 

57.5% 

 

FF* 

(40) 

 

21 

52.5% 

 

32 

80.0% 

  

25 

62.5% 

 

15 

37.5% 

  

9 

22.5% 

 

31 

77.5% 
Note: a: Number of participants for whom the one-parameter variant of a model (NoR or nIBE) fits the data 

significantly better than its non-parametric variant. 
 

The finding that a Losers’ Feedback does not affect bidding when the auction is one-shot does 

not contradict our rationale if the feedback-nudge is assumed to have a stochastic rather than a 

deterministic effect on behavior (as we assumed when formulating CONJECTURE 2). Indeed, if 

bidders do not always respond to the asymmetric feedback, then the latter may not affect 
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behavior in one-shot auctions, as we found above, but it may in repeated auctions. OS find 

evidence that participants do react to losers’ feedback as predicted by Learning Direction 

Theory so that some dynamics are at play in their repeated setting. This leads us to conjecture 

that bidding in the first-round of a repeated auction may not be affected by LF-type of 

feedbacks, and that bidding in subsequent rounds depends on the history of bidders’ feedbacks. 

To this extent, while the �̂� -estimates in Table 4 reflect average behavior throughout the 

experiment, we expect significant difference in the estimates only in later rounds of different 

end-of-round feedback treatments, not in their first rounds. This is confirmed by the time series 

of �̂�-estimates reported in Appendix C. 

In sum, our analysis indicates that besides fitting the data of several experiments well, the 

nonlinear characteristic of AsP explains best the data of OS (on two-bidder auctions) and the 

linear one of nIBE explains best the data of IW (on four-bidder auctions). However, since these 

experiments used very different protocols, their outcomes are hardly comparable and we refrain 

from concluding that competition dampens AsP considerations, as Property (ii) of 𝑏𝐴𝑠𝑃(𝑣, 𝜙𝑖) 

suggests.10 

3.2. All-Pay auctions 

Table 6 reports the estimation outcomes for all-pay auctions. In HOS, overbidding is most 

salient in the LF treatment as the three-fold difference in the magnitudes of the �̂�-estimates 

indicate; this supports CONJECTURE 2. Also, nIBE(1, �̂�) largely outperforms nIBE(�̂�, 1) in 

terms of goodness-of-fit, no matter the end-of-round feedback (MF or LF in HOS). We attribute 

such better fit to the existence of the additional downward impulse 𝐷1𝑛  in nIBE which 

generates a nonlinearity in nIBE’s bidding strategy that is best captured by the impulse 

weighting parameter 𝜆. The last column of the “Homogenous” panel of Table 6 reports the 

estimation results of HOS’ ex-post Regret models for the MF and LF treatments which indicate 

that it is outperformed by nIBE(1, �̂�) no matter the number of bidders 𝑛 = {2,6} or the end-of-

round feedback (MF or LF). 

Figure 6 displays the estimated bidding strategies along polynomial fits (of degree 6) of the 

data. The plots clearly indicate that nIBE(1, �̂�) organizes observed behaviour best, and by far. 

                                                           
10 We note that our conclusions hold for the data of Chen, Katuščak and Ozdenoren (2007) on first-price auctions 

with two bidders and non-uniformly drawn values. The analysis of this data is relegated to Appendix D for the 

interested reader. 



24 
 

Assuming heterogeneity confirms this and further documents the observed behavior.11 The 

means and samples’ quartiles of the �̂�𝑖-estimates suggest highly skewed distributions, i.e., with 

means greater than the samples’ third quartiles. This is particularly the case in HOS/MF where 

the average �̂�𝑖-estimate of 38.3 indicate the submission of very low bids whatsoever the values 

received. However, only three participants in HOS/MF (and one in NS) actually “dropped out”, 

the �̂�𝑖-estimates of these participants being 995.7, 984.9, 180.7 (and 99.0). Like HOS and NS, 

we believe that such “drop outs” result from the repeated experience of having to pay ones’ 

own bid upon losing.  

TABLE 6: ESTIMATION OUTCOMES FOR ALL-PAY AUCTIONS. 

 
  Parameter 

-free 

 Parametric models 

   Homogenous Heterogeneous 

Data 
Treatment 

(# Obs. | # Ind.) 

nIBE or 

SBNE 
 

nIBE (�̂�, 1) 

or SBNE(�̂�) 
nIBE(1, �̂�) Regret(�̂�)  nIBE(�̂�𝑖 , 1) nIBE(1, �̂�𝑖) 

 

HOS 
 

𝑛 = 2 

MF 

(1160 | 58) 

 

 

 

83.9 

  

1.503 

[1.222, 1.784] 

111.5** 

 

.308 

[.261, .354] 

149.6*** 

 

.928 

[.765, 1.090] 

137.3*** 

 [1.04, 1.48, 1.88] 

‹1.566› 

(1.149) 

147.4 

[.06, .21, 1.69] 

‹38.337› 

(183.0) 

563.3 

LF 

(1240 | 62) 

 

 

 

-26.4 

  

1.528 

[1.238, 1.819] 

16.3*** 

 

.118 

[.102, .135] 

382.1*** 

 

1.697 

[1.510, 1.884] 

260.4*** 

 [1.31, 1.48, 1.71] 

‹1.533› 

(.627) 

35.0 

[.03, .11, .31] 

‹.351› 

(.695) 

719.2 
 

NS 
 

𝑛 = 6 
MF 

(600 | 24) 

 

 

 

31.6 

  

.479 

[.374, .583] 

75.6*** 

 

.311 

[.249, .373] 

88.2*** 

 

0 

[-.231, .231] 

31.6 

 [.40, .54, .90] 

‹7.24› 

(22.9) 

117.3 

[.15, .30, .53] 

‹4.82› 

(20.11) 

210.4 

Note: For HOS/LF, we estimate the Regret model of HOS with 𝛽 = 𝛾 > 0. Log-likelihood statistics in italics; ***: Likelihood ratio test 

rejects the null of equivalence in favour of the alternative that the augmented model gives a better fit than the parameter-free one at 𝛼 =
1%; **: 5%. 

 

The NS data in Figure 6 further suggests a tendency to underbid at low values and to overbid 

at high ones; what Mueller and Schotter (2010) label a “bifurcating” strategy. Such behavior 

can be explained in terms of nonlinear probability distortion if one assumes a more flexible 

specification of bidders’ PWF, like the one Prelec’s (1998) (with two parameters). With such 

a specification, participants are found to over-estimate their probabilities of winning at low 

values (which leads them to underbid) and to under-estimate them at high values (which leads 

them to overbid), but since this cannot organise the effects of information feedback, we do not 

investigate this further. 

“Dropping out” is much less observed in HOS/LF which, as conjectured, generates higher bids 

(the highest �̂�𝑖 -estimate in this treatment is 4.63). This is supported by significant cross-

                                                           
11 We report only on nIBE because the SBNE and Regret models assume homogenous parameters and are nomore 

equilibrium models without additionally assuming that the distribution of traits (𝛽𝑖) is common knowledge. 
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treatment differences in the �̂�𝑖-estimates only (𝑝-values: .4221 (�̂�𝑖) and .0005 (�̂�𝑖), according 

to a one-tailed Fisher-Pitman randomization tests). Table 7 reports on the models’ performance 

at the individual level. Likelihood ratio tests indicate that nIBE(1, �̂�𝑖) explains the data better 

than its parameter-free variant for over 62% of participants in HOS whereas nIBE(�̂�𝑖, 1) does 

so for less than 31%. These one-parameter models equally outperform their parameter-free 

variants for only about 20% of participants, but pairwise comparisons of the models’ goodness-

of-fits indicate that nIBE(1, �̂�𝑖) generates a higher goodness-of-fit for over 72% of participants 

whereas nIBE(�̂�𝑖, 1) does so for less than 27%. 

In sum, nIBE with impulse weighting fits behavior significantly better than nIBE’s or SBNE’s 

variant with a power PWF (and no impulse weighting) or than the Regret model of HOS. 

 

 

 

Note: [*] characterizes the model with the best goodness-of-fit; Polynomial fit is of degree 6. In NS/MF, the Regret model of 

HOS yields the same predictions as nIBE or SBNE for 𝛽 ≥ 0.  

 

FIGURE 6: ESTIMATED nIBE BIDDING FUNCTIONS FOR ALL-PAY AUCTIONS. 
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TABLE 7: ‘BEST’ MODEL FOR INDIVIDUALS: ALL-PAY AUCTIONS 
 

  
𝐻𝛼

𝑛𝐼𝐵𝐸  𝐻𝜆
𝑛𝐼𝐵𝐸  

 nIBE 

(�̂�𝑖 , 1) 

nIBE 

(1, �̂�𝑖) 
        

HOS 

𝑛 = 2 

MF 

(58) 

18 

31.0% 

36 

62.1% 
 

16 

27.6% 

42 

72.4% 

LF 

(62) 

10 

16.1% 

40 

64.5% 
 

10 

16.1% 

52 

83.9% 

NS 

𝑛 = 6 

MF 

(24) 

18 

75% 

20 

83.3% 
 

5 

20.8% 

19 

79.2% 

Note: a: Number of participants for whom the one-parameter variant of a 

model (AsP or nIBE) fits the data significantly better than its non-parametric 

variant. 
 

4. Conclusion 

Bidding in first-price, descending-price or all-pay auctions with incomplete information is a 

complex task that has traditionally been modelled in game-theoretic terms. Our approach to the 

modelling of these auctions forgoes the strategic reasoning that underlies game-theoretic 

models and exploits the information available to bidders. It basically frames the bidder’s 

problem as a decision-theoretic one that involves the use of a bidding rule to achieve some 

objective. We assume for bidding rule a variant of the weakly dominant bidding strategy for 

ascending-price auctions and we show how it can be used to achieve two different objectives, 

each leading to a different model. The AsP model pertains to first-price auctions and assumes 

that bidders just want to achieve some aspired payoff that is essentially defined by ones’ value 

realization, the distribution of values and the extent of competition. The nIBE model pertains 

to first-price and all-pay auctions and assumes that bidders bid in a way to balance their 

anticipated regrets from losing and from winning the auction. 

These models are parameter-free, like Vickrey’s benchmark model, and may accommodate 

behavioral traits such as nonlinear probability misperception and/or impulse weighting (when 

relevant). The resulting bidding strategies require no prior assumption such as monotonicity or 

differentiability and share properties of the Symmetric Bayes-Nash Equilibrium (SBNE) 

bidding strategies. We determine the conditions under which they are identical to SBNE 

strategies and/or imply an equivalence of the seller’s expected revenue from ascending, first-

price and all-pay auctions. Thus, the main contribution of our study is to show that the 

predictions of the SBNE model for first-price and all-pay auctions, as well as the weakly 
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dominant strategy for second-price auctions with independent private values may obtain 

without any game-theoretic reasoning.12 

We assess the models’ explanatory powers with the data of several experiments on first-price 

and all-pay auctions with two, four or six bidders. Although these experiments vary in several 

aspects, they share common features that allow the formulation of simple conjectures. We 

summarize our main empirical findings in the following two points. 

First, we find that in terms of parameter-free models for first-price auctions, AsP fits best the 

observed nonlinear overbidding and outperforms the SBNE model in auctions with two bidders, 

no matter if these auctions are ‘one shot’ or ‘repeated’ (or if values are uniformly or non-

uniformly drawn, cf. Appendix D). In auctions with four bidders, nIBE’s linear prediction 

explains behavior better than AsP, which is in line with AsP’s convergence to SBNE bidding 

(or equivalently nIBE bidding) as the number of bidders grows large (cf. CONJECTURE 1). 

Second, although nIBE deals with anticipated regrets, its impulse balancing feature provides 

structure to study the effects of end-of-round information feedback on behavior (cf. 

CONJECTURE 2). We show how the provision of a Losers’ Feedback (i.e., disclosing the winning 

bid to the losers of an auction) induces higher bids than the provision of other types of feedback 

(i.e, Winner’s, Minimal or Full Feedback), and we foresee why this is more likely to happen in 

repeated than in one-shot auctions, as observed in the experiments. In repeated first-price 

auctions, nIBE with impulse weighting and the Regret model of Filiz and Ozbay (2007, with a 

linear ‘loser regret function’) generate linear bid predictions when values are uniformly drawn, 

and they organize the effect of information feedback on behavior better than nIBE, SBNE (or 

level-k) with a power PWF. However, in repeated all-pay auctions, which entail nonlinear 

bidding strategies when values are uniformly drawn, nIBE with impulse weighting outperforms 

these models, as well as the Regret model of Hyndman, Ozbay and Sujarittanonta (2012), in 

terms of goodness-of-fit. 

Overall, our approach rationalizes the data of these auction experiments well. Although it has 

it little scope for the analysis of bidding behavior in second-price auctions which often report 

overbidding, i.e., bidding more than ones’ value,  it is sufficiently flexible for hybridization 

with other models of pay-your-bid auctions. AsP and nIBE could for example be used in level-

                                                           
12 See Güth and Pezanis-Christou (2015, 2018) on a related topic showing that the SBNE bidding strategy for risk 

neutral bidders in first-price auctions and fair-division games can be sustained in an evolutionary context that 

assumes a class of bidding rules, no belief about others’ behavior and no knowledge of the distribution of values. 
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k as alternative definitions of L0-bidders, or they could be embedded in a learning model to 

further study how end-of-round feedback affects behavior in repeated auctions (cf. Appendix 

C, see also Saran and Serrano, 2014). Finally, it could be of interest for the structural analysis 

of field auction data (see, e.g., Paarsch and Hong, 2006). This literature builds on the 

invertibility of the Nash equilibrium bidding strategy to recover, either parametrically or non-

parametrically, the unknown distribution of values to provide policy recommendations. For the 

auctions studied here, such recovery could be achieved using AsP or nIBE and the resulting 

recommendations, of which the game-theoretic ones are a special case, may be worth 

investigating further. 
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Appendix A: Monotonicity of nIBE bidding strategies 

  

A.1.    First-price auctions 

Proof: Consider the nIBE solution: 

𝑥∗ = 𝑣𝑖 −
∫ 𝜙𝑖(𝐹(𝑦)

𝑛−1)𝑑𝑦
𝑣𝑖
0

𝜙𝑖(𝐹(𝑣𝑖)
𝑛−1)

+ (1 − 𝜆)
∫ 𝜙𝑖(𝐹(𝑦)

𝑛−1)𝑑𝑦
𝑥∗

0

𝜙𝑖(𝐹(𝑣𝑖)
𝑛−1)

. 

Re-arranging terms gives: 

𝑥∗𝜙𝑖(𝐹(𝑣𝑖)
𝑛−1) − 𝑣𝑖𝜙𝑖(𝐹(𝑣𝑖)

𝑛−1) + ∫ 𝜙𝑖(𝐹(𝑦)
𝑛−1)𝑑𝑦

𝑣𝑖

0

− (1 − 𝜆)∫ 𝜙𝑖(𝐹(𝑦)
𝑛−1)𝑑𝑦

𝑥∗

0

= 0. 

Define 𝜓(𝑥∗, 𝑣𝑖) as 

𝜓(𝑥∗, 𝑣𝑖) = 𝑥
∗𝜙𝑖(𝐹(𝑣𝑖)

𝑛−1) − 𝑣𝑖𝜙𝑖(𝐹(𝑣𝑖)
𝑛−1) + ∫ 𝜙𝑖(𝐹(𝑦)

𝑛−1)𝑑𝑦
𝑣𝑖

0

− (1 − 𝜆)∫ 𝜙𝑖(𝐹(𝑦)
𝑛−1)𝑑𝑦

𝑥∗

0

= 0. 

Taking the partial derivative of 𝜓(𝑥∗, 𝑣𝑖) with respect to 𝑣𝑖 gives: 

𝜕𝜓(𝑥∗, 𝑣𝑖)

𝜕𝑣𝑖
= (𝑛 − 1)𝐹(𝑣𝑖)

𝑛−2
𝑑𝜙

𝑖

𝑑𝐹

𝑑𝐹

𝑑𝑣𝑖
[𝑥∗ − 𝑣𝑖] < 0. 

Taking the partial derivative of 𝜓(𝑥∗, 𝑣𝑖) with respect to 𝑥∗ gives: 

 

𝜕𝜓(𝑥∗, 𝑣𝑖)

𝜕𝑥∗
= 𝜙

𝑖
(𝐹(𝑣𝑖)

𝑛−1) − (1 − λ)𝜙
𝑖
(𝐹(𝑥∗)𝑛−1) > 0. 

Using the implicit function theorem, we have: 

𝑑𝑥∗

𝑑𝑣𝑖
= −

𝜕𝜓(𝑥∗, 𝑣𝑖) 𝜕𝑣𝑖⁄

𝜕𝜓(𝑥∗, 𝑣𝑖) 𝜕𝑥
∗⁄
> 0. 

 

A.2.    All-pay auctions 

Proof:  Consider the nIBE solution: 

 

𝑥∗ =
𝑣𝜙

𝑖
(𝐹(𝑣𝑖)

𝑛−1) − ∫ 𝜙
𝑖
(𝐹(𝑦)𝑛−1)𝑑𝑦 + (1 − 𝜆)∫ 𝜙

𝑖
(𝐹(𝑦)𝑛−1)𝑑𝑦

𝑥∗

0

𝑣𝑖
0

𝜙
𝑖
(𝐹(𝑣𝑖)

𝑛−1) + 𝜆[1 − 𝜙
𝑖
(𝐹(𝑣𝑖)

𝑛−1)]
. 

 

Re-arranging terms, this is equivalent to: 

(1 − 𝜆)𝜙𝑖(𝐹(𝑣𝑖)
𝑛−1)𝑥∗ + 𝜆𝑥∗ − 𝑣𝑖𝜙𝑖(𝐹(𝑣𝑖)

𝑛−1) + ∫ 𝜙𝑖(𝐹(𝑦)
𝑛−1)𝑑𝑦

𝑣𝑖

0

− (1 − 𝜆)∫ 𝜙𝑖(𝐹(𝑦)
𝑛−1)𝑑𝑦

𝑥∗

0

= 0 
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Define 𝜓(𝑥∗, 𝑣𝑖) as: 

𝜓(𝑥∗, 𝑣𝑖) = (1 − 𝜆)𝜙𝑖(𝐹(𝑣𝑖)
𝑛−1)𝑥∗ + 𝜆𝑥∗ − 𝑣𝑖𝜙𝑖(𝐹(𝑣𝑖)

𝑛−1) + ∫ 𝜙
𝑖
(𝐹(𝑦)𝑛−1)𝑑𝑦

𝑣𝑖

0

 

 −(1 − 𝜆)∫ 𝜙
𝑖
(𝐹(𝑦)𝑛−1)𝑑𝑦

𝑥∗

0

= 0. 

 

Taking partial derivative of 𝜓(𝑥∗, 𝑣𝑖) with respect to 𝑣𝑖 gives: 

 

𝜕𝜓(𝑥∗, 𝑣𝑖)

𝜕𝑣𝑖
= (𝑛 − 1)𝐹(𝑣𝑖)

𝑛−2
𝑑𝜙

𝑖

𝑑𝐹

𝑑𝐹

𝑑𝑣𝑖
[(1 − 𝜆)𝑥∗ − 𝑣𝑖] < 0; 

 

Taking partial derivative of 𝜓(𝑥∗, 𝑣𝑖) with respect to 𝑥∗ gives: 

𝜕𝜓(𝑥∗, 𝑣𝑖)

𝜕𝑥∗
= 𝜆 + (1 − 𝜆)[𝜙

𝑖
(𝐹(𝑣𝑖)

𝑛−1) − 𝜙(𝐹(𝑥∗)𝑛−1] > 0; 

 

Using the implicit function theorem, we have: 

𝑑𝑥∗

𝑑𝑣𝑖
= −

𝜕𝜓(𝑥∗, 𝑣𝑖) 𝜕𝑣𝑖⁄

𝜕𝜓(𝑥∗, 𝑣𝑖) 𝜕𝑥
∗⁄
> 0. 
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Appendix B: Original and re-labelled treatment names 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Experiment Original treatment name Re-labelled as 

OS 
No Feedback (NF) LF 

Feedback (F) FF 

IW 
Limited Information 

Full Information 

LF* 

FF* 

HOS 
Partial Feedback MF 

Full Feedback LF 

KMZ 

Minimal Feedback MF 

Losers’ Feedback LF 

Winner’s Feedback WF 

FO 

No Feedback MF 

Losers’ Regret LF 

Winner’s Regret WF 

CKO K1 LF 
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Appendix C: Time-series plots of nIBE’s 𝝀-estimates 

 

 
Note: For OS, each data point represents the estimate for a week, i.e., five consecutive rounds (days) with the same 

value. 
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Appendix D: Analysis of Chen, Katuščak and Ozdenoren (2007). 

We analyse the experimental data on first-price auctions of Chen, Katuščak and Ozdenoren (2007, 

CKO) who assume non-uniform distribution of values. In their K1 treatment, bidders know that 

their values are either drawn from a distribution 𝐹1(𝑣) = (
3

2
𝑣) 𝕀

{0≤𝑣≤
1

2
}
+ (

3

4
+
1

2
(𝑣 −

1

2
)) 𝕀

{
1

2
<𝑣≤1}

 

with probability 𝛿 = 0.7 or from a distribution 𝐹2(𝑣) = (
1

2
𝑣) 𝕀

{0≤𝑣≤
1

2
}
+ (

1

4
+
3

2
(𝑣 −

1

2
)) 𝕀

{
1

2
<𝑣≤1}

 

with probability (1 − 𝛿) = 0.3. As the resulting SBNE, AsP and nIBE bidding strategies are piece-

wise linear in values, the analysis of this data permits an assessment of the robustness of our models. 

As we assume that bidders distort probabilities according to a power PWF, we use the 

transformation 𝑤(𝛿) =
𝛿𝛼

𝛿𝛼+(1−𝛿)𝛼
 so as to have 𝑤(𝛿) + 𝑤(1 − 𝛿) = 1.1  

The determination of the AsP and nIBE strategies directly follows from the definitions provided in 

the text and yields two-piecewise nonlinear bidding functions that verify properties (i)-(iii) of the 

respective model. The following sections provide the details of the derivation of these bidding 

strategies and their estimation outcomes; a brief discussion follows.  

D.1. AsP with power probability distortion: AsP(𝜶, 𝜹) 

Following the definition provided in the text, we have two cases to consider depending on the 

realization of bidder 𝑖’s value. 

𝜋𝐴𝑠𝑃(𝑣𝑖, 𝛼, 𝛿) = 𝜋𝐴𝑠𝑃
1 (𝑣𝑖, 𝛼, 𝛿)𝕀{0≤𝑣𝑖≤

1
2
}
+ 𝜋𝐴𝑠𝑃

2 (𝑣𝑖 , 𝛼, 𝛿)𝕀{1
2
<𝑣𝑖≤1}

 

with  𝜋𝐴𝑠𝑃
1 (𝑣𝑖, 𝛼, 𝛿) = 𝑤(𝛿)∫ (𝑣𝑖 − 𝑦)𝑑𝜙(𝐹

1(𝑦)) + (1 − 𝑤(𝛿))∫ (𝑣𝑖 − 𝑦)𝑑𝜙(𝐹
2(𝑦))

𝑣𝑖

0

𝑣𝑖

0

 

 
= 𝑤(𝛿)∫ 𝜙(𝐹1(𝑦))𝑑𝑦 + (1 − 𝑤(𝛿))∫ 𝜙(𝐹2(𝑦))𝑑𝑦

𝑣𝑖

0

𝑣𝑖

0

 

 
= 𝑤(𝛿) (

3

2
)
𝛼 𝑣𝑖

𝛼+1

𝛼 + 1
+ (1 − 𝑤(𝛿)) (

1

2
)
𝛼 𝑣𝑖

𝛼+1

𝛼 + 1
 

 

and  𝜋𝐴𝑠𝑃
2 (𝑣𝑖, 𝛼, 𝛿) = 𝑤(𝛿) (∫ (𝑣𝑖 − 𝑦)𝑑𝜙(𝐹

1(𝑦)) + ∫ (𝑣𝑖 − 𝑦)𝑑𝜙(𝐹
1(𝑦))

𝑣

1 2⁄

1 2⁄

0

) 

                                                           
1 We used this normalization to make our results independent of whether the transformation primarily applies to the 

event associated with 𝛿  or to the one associated with (1 − 𝛿). Estimating the models assuming 𝑤(𝛿) = 𝛿𝛼  yields 

negligible differences that leave our conclusions unchanged. 
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+(1 − 𝑤(𝛿)) (∫ (𝑣𝑖 − 𝑦)𝑑𝜙(𝐹

2(𝑦)) + ∫ (𝑣𝑖 − 𝑦)𝑑𝜙(𝐹
2(𝑦))

𝑣

1 2⁄

1 2⁄

0

) 

 

 

= 𝑤(𝛿)
[(1 + 𝑣𝑖)

𝛼+1 − (
3
2
)
𝛼

] (
1
2
)
𝛼

𝛼 + 1
+ (1 − 𝑤(𝛿))

[(3𝑣𝑖 − 1)
𝛼+1 + (

1
2
)
𝛼

] (
1
2
)
𝛼

3(𝛼 + 1)
 

 

By denoting the first and second segments 𝑏𝐴𝑠𝑃
𝑘 (𝑣𝑖, 𝛼) (with 𝑘 = {1,2}) of 𝑏𝐴𝑠𝑃(𝑣𝑖, 𝛼) such that 

𝑣𝑖 − 𝑏𝐴𝑠𝑃
𝑘
(𝑣𝑖, 𝛼) = 𝜋𝐴𝑠𝑃

𝑘 (𝑣𝑖, 𝛼), we get the following two-piecewise nonlinear AsP bidding strategy: 

𝑏𝐴𝑠𝑃(𝑣𝑖 , 𝛼, 𝛿) = 𝜒1(𝑣𝑖 , 𝛼, 𝛿)𝕀{0≤𝑣𝑖≤
1
2
}
+ 𝜒2(𝑣𝑖, 𝛼, 𝛿)𝕀{1

2
<𝑣𝑖≤1}

 

with 

𝜒1(𝑣𝑖 , 𝛼, 𝛿) = 𝑣𝑖 −
[𝑤(𝛿)3𝛼 + (1 − 𝑤(𝛿))]𝑣𝑖

𝛼+1

2𝛼(𝛼 + 1)
 

and  

𝜒2(𝑣𝑖 , 𝛼, 𝛿) = 𝑣𝑖 −
𝑤(𝛿) [(1 + 𝑣𝑖)

𝛼+1 − (
3
2)
𝛼

] +
1 − 𝑤(𝛿)

3 [(3𝑣𝑖 − 1)
𝛼+1 +

1
2𝛼]

2𝛼(𝛼 + 1)
. 

 

D.2.1. nIBE with power probability distortion and 𝝀 = 𝟏: nIBE(𝜶; 𝟏, 𝜹). 

Following the definitions of the expected upward and downward impulses provided in the text, we 

have:  

𝑈(𝑥, 𝑣𝑖) = 𝑈
1(𝑣𝑖, 𝛼, 𝛿)𝕀{0≤𝑣𝑖≤

1
2
}
+𝑈2(𝑣𝑖, 𝛼, 𝛿)𝕀{1

2
<𝑣𝑖≤1,0≤𝑥≤

1
2
 }
+ 𝑈3(𝑣𝑖, 𝛼, 𝛿)𝕀{1

2
<𝑣𝑖≤1,0≤𝑥≤

1
2
 }
 

and  

𝐷(𝑥, 𝑣𝑖) = 𝐷
1(𝑣𝑖, 𝛼, 𝛿)𝕀{0≤𝑣𝑖≤

1
2
}
+ 𝐷2(𝑣𝑖, 𝛼, 𝛿)𝕀{1

2
<𝑣𝑖≤1,0≤𝑥≤

1
2
 }
+ 𝐷3(𝑣𝑖, 𝛼, 𝛿)𝕀{1

2
<𝑣𝑖≤1,0≤𝑥≤

1
2
 }
 

and the following conditions must be satisfied: 

𝑈1(𝑣𝑖, 𝛼, 𝛿)𝕀{0≤𝑣𝑖≤
1
2
}
= 𝐷1(𝑣𝑖, 𝛼, 𝛿)𝕀{0≤𝑣𝑖≤

1
2
}
 

𝑈2(𝑣𝑖, 𝛼, 𝛿)𝕀{1
2
<𝑣𝑖≤1,   0≤𝑥≤

1
2
 }
= 𝐷2(𝑣𝑖, 𝛼, 𝛿)𝕀{1

2
<𝑣𝑖≤1,0≤𝑥≤

1
2
 }

 

and                       𝑈3(𝑣𝑖, 𝛼, 𝛿)𝕀{1
2
<𝑣𝑖≤1,   0≤𝑥≤

1

2
 }
= 𝐷3(𝑣𝑖, 𝛼, 𝛿)𝕀{1

2
<𝑣𝑖≤1,0≤𝑥≤

1

2
 }

. 
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Again, letting 𝜙(𝑝) = 𝑝𝛼 if 𝑝 is continuous and 𝑤(𝑝) =
𝑝𝛼

𝑝𝛼+(1−𝑝)𝛼
 if 𝑝 is discrete, we have:  

 𝑈1(𝑥, 𝑣𝑖) 
= 𝑤(𝛿)∫ (𝑦 − 𝑥)𝑑𝜙(𝐹1(𝑦)) + (1 − 𝑤(𝛿))∫ (𝑦 − 𝑥)𝑑𝜙(𝐹2(𝑦))

𝑣𝑖

𝑥

𝑣𝑖

𝑥

 

 

 
= 𝑤(𝑝)∫ (𝑦 − 𝑥)𝑑 (

3

2
𝑦)
𝛼

+ (1 − 𝑤(𝛿))∫ (𝑦 − 𝑥)𝑑 (
1

2
𝑦)
𝛼𝑣𝑖

𝑥

𝑣𝑖

𝑥

 

 
= [𝑤(𝛿) (

3

2
)
𝛼

𝛼 + (1 − 𝑤(𝛿)) (
1

2
)
𝛼

𝛼](
𝑣𝑖
𝛼+1

𝛼 + 1
− 𝑥

𝑣𝑖
𝛼

𝛼
+
𝑥𝛼+1

𝛼
−
𝑥𝛼+1

𝛼 + 1
) 

and 

𝐷1(𝑥, 𝑣𝑖) = 𝑤(𝛿)∫ (𝑥 − 𝑦)𝑑𝜙(𝐹1(𝑦)) + (1 − 𝑤(𝛿))∫ (𝑥 − 𝑦)𝑑𝜙(𝐹2(𝑦))
𝑥

0

𝑥

0

 

 
= 𝑤(𝛿)∫ (𝑥 − 𝑦)𝑑 (

3

2
𝑦)
𝛼

+ (1 − 𝑤(𝛿))∫ (𝑥 − 𝑦)𝑑 (
1

2
𝑦)
𝛼𝑥

0

𝑥

0

 

 
= [𝑤(𝛿) (

3

2
)
𝛼

𝛼 + (1 − 𝑤(𝛿)) (
1

2
)
𝛼

𝛼](
𝑥𝛼+1

𝛼
−
𝑥𝛼+1

𝛼 + 1
) 

which yields for solution 𝜑1(𝑣𝑖, 𝛼, 𝛿) =
𝛼

𝛼+1
𝑣𝑖. Similarly, we have: 

             𝑈2(𝑥, 𝑣𝑖) = 𝑤(𝛿) (∫ (𝑦 − 𝑥)𝑑𝜙(𝐹1(𝑦)) + ∫ (𝑦 − 𝑥)𝑑𝜙(𝐹1(𝑦))
𝑣𝑖
1 2⁄

1 2⁄

𝑥
) 

                                      + (1 − 𝑤(𝛿)) (∫ (𝑦 − 𝑥)𝑑𝜙(𝐹2(𝑦)) + ∫ (𝑦 − 𝑥)𝑑𝜙(𝐹2(𝑦))
𝑣𝑖
1 2⁄

1 2⁄

𝑥
) 

                             = 𝑤(𝛿) ((
3

2
)
𝛼
𝛼)(

(
1

2
)
𝛼+1

−𝑥𝛼+1

𝛼+1
+
𝑥𝛼+1−𝑥(

1

2
)
𝛼

𝛼
) 

                                      + 𝑤(𝛿) ((
1

2
)
𝛼
𝛼)(

(𝑣𝑖−𝑥)(𝑣+1)
𝛼

𝛼
+
(
1

2
)
𝛼+1

−(𝑣𝑖+1)
𝛼+1

𝛼(𝛼+1)
+
(𝑥−

1

2
)(
3

2
)
𝛼

𝛼
) 

                                      +(1 − 𝑤(𝛿)) ((
1

2
)
𝛼
𝛼) 

(

 
 
(
1

2
)
𝛼+1

−𝑥𝛼+1

𝛼+1
+
𝑥𝛼+1−𝑥(

1

2
)
𝛼

𝛼
+
(𝑣𝑖−𝑥)(3𝑣𝑖−1)

𝛼

𝛼

+
(
1

2
)
𝛼+1

−(3𝑣𝑖−1)
𝛼+1

3𝛼(𝛼+1)
+
(𝑥−

1

2
)(
1

2
)
𝛼

𝛼 )

 
 

 

and  

            𝐷2(𝑥, 𝑣𝑖) = 𝑤(𝛿) ∫ (𝑥 − 𝑦)𝑑(𝐹
1(𝑦))

𝛼
+ (1 − 𝑤(𝛿)) ∫ (𝑥 − 𝑦)𝑑(𝐹2(𝑦))

𝛼𝑥

0

𝑥

0
 

                           = 𝑤(𝛿) ((
3

2
)
𝛼
𝛼) (

𝑥𝛼+1

𝛼
−
𝑥𝛼+1

𝛼+1
) + (1 − 𝑤(𝛿)) ((

1

2
)
𝛼
𝛼) (

𝑥𝛼+1

𝛼
−
𝑥𝛼+1

𝛼+1
) 
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which yields for solution 𝜑2(𝑣𝑖, 𝛼, 𝛿): 

𝜑2(𝑣𝑖, 𝛼, 𝛿) =
𝑤(𝛿) [(𝛼𝑣𝑖 − 1)(1 + 𝑣𝑖)

𝛼 + (
3
2
)
𝛼

] +
(1 − 𝑤(𝛿))

3 [(3𝛼𝑣𝑖 + 1)(3𝑣𝑖 − 1)
𝛼 − (

1
2
)
𝛼

]

𝑤(𝛿)(𝛼 + 1)(1 + 𝑣𝑖)
𝛼 + (1 − 𝑤(𝛿))(𝛼 + 1)(3𝑣𝑖 − 1)

𝛼
. 

Finally, we have:  

              𝑈3(𝑥, 𝑣𝑖) = 𝑤(𝛿) ∫ (𝑦 − 𝑥)𝑑(𝐹1(𝑦))
𝛼
+ (1 − 𝑤(𝛿)) ∫ (𝑦 − 𝑥)𝑑(𝐹2(𝑦))

𝛼𝑣𝑖
𝑥

𝑣𝑖
𝑥

 

                             = 𝑤(𝛿) ∫ (𝑦 − 𝑥)𝑑 (
1

2
𝑦 +

1

2
)
𝛼
+ (1 − 𝑤(𝛿)) ∫ (𝑦 − 𝑥)𝑑 (

3

2
𝑦 −

1

2
)
𝛼𝑣𝑖

𝑥

𝑣𝑖
𝑥

 

and 

             𝐷3(𝑥, 𝑣𝑖) = 𝑤(𝛿) (∫ (𝑥 − 𝑦)𝑑(𝐹1(𝑦))
𝛼
+ ∫ (𝑥 − 𝑦)𝑑(𝐹1(𝑦))

𝛼𝑥

1 2⁄

1 2⁄

0
) 

                                                    +(1 − 𝑤(𝛿)) (∫ (𝑥 − 𝑦)𝑑(𝐹2(𝑦))
𝛼
+ ∫ (𝑥 − 𝑦)𝑑(𝐹2(𝑦))

𝛼𝑥

1 2⁄

1 2⁄

0
) 

                            = 𝑤(𝛿) (∫ (𝑥 − 𝑦)𝑑 (
3

2
𝑦)
𝛼
+ ∫ (𝑥 − 𝑦)𝑑 (

1

2
𝑦 +

1

2
)
𝛼𝑥

1 2⁄

1 2⁄

0
) 

                                                   +(1 − 𝑤(𝛿)) (∫ (𝑥 − 𝑦)𝑑 (
1

2
𝑦)
𝛼
+ ∫ (𝑥 − 𝑦)𝑑 (

3

2
𝑦 −

1

2
)
𝛼
 

𝑥

1 2⁄

1 2⁄

0
) 

 

which yields for solution 𝜑3(𝑣𝑖, 𝛼, 1, 𝛿):  

 

𝜑3(𝑣𝑖, 𝛼, 𝛿) =
𝑤(𝛿) [(𝛼𝑣𝑖 − 1)(1 + 𝑣𝑖)

𝛼 + (
3
2)
𝛼] +

(1 − 𝑤(𝛿))
3 [(3𝛼𝑣𝑖 + 1)(3𝑣𝑖 − 1)

𝛼 − (
1
2)
𝛼

]

𝑤(𝛿)(𝛼 + 1)(1 + 𝑣𝑖)
𝛼 + (1 − 𝑤(𝛿))(𝛼 + 1)(3𝑣𝑖 − 1)

𝛼
 

which is identical to 𝜑2(𝑣𝑖, 𝛼, 𝛿). Summing up, we have:  

 

𝑏𝑛𝐼𝐵𝐸
𝐹𝑃 (𝑣𝑖, 𝛼, 𝛿) = 𝜑1(𝑣𝑖, 𝛼, 𝛿)𝕀{0≤𝑣𝑖≤

1
2
}
+ 𝜑2(𝑣𝑖, 𝛼, 𝛿)𝕀{1

2
<𝑣𝑖≤1}

 

D.2.2. nIBE with impulse weighting and no probability weighting: nIBE(𝟏, 𝝀; 𝜹). 

For 𝑣𝑖 ∈ [0,
1

2
], we have: 

𝑈(𝑥, 𝑣𝑖) = 𝛿∫ (𝑦 − 𝑥)𝑑𝐹1(𝑦) + (1 − 𝛿)∫ (𝑦 − 𝑥)𝑑𝐹2(𝑦)
𝑣𝑖

𝑥

𝑣𝑖

𝑥

 

= 𝛿∫ (𝑦 − 𝑥)𝑑 (
3

2
𝑦) + (1 − 𝛿)∫ (𝑦 − 𝑥)𝑑 (

1

2
𝑦)

𝑣

𝑥

𝑣𝑖

𝑥

 

𝐷(𝑥, 𝑣𝑖) = 𝛿∫ (𝑥 − 𝑦)𝑑𝐹1(𝑦) + (1 − 𝛿)∫ (𝑥 − 𝑦)𝑑𝐹2(𝑦)
𝑥

0

𝑥

0
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= 𝛿∫ (𝑥 − 𝑦)𝑑 (
3

2
𝑦) + (1 − 𝛿)∫ (𝑥 − 𝑦)𝑑 (

1

2
𝑦)

𝑥

0

𝑥

0

 

𝜓1(𝑣𝑖𝑗𝑡 , 𝜆, 𝛿) =
1

1 + √𝜆
𝑣𝑖 

For 𝑣𝑖 ∈ (
1

2
, 1] and 𝑥 ∈ [0,

1

2
] 

𝑈(𝑥, 𝑣𝑖) = 𝛿 (∫ (𝑦 − 𝑥)𝑑𝐹1(𝑦) + ∫ (𝑦 − 𝑥)𝑑𝐹1(𝑦)
𝑣𝑖

1 2⁄

1 2⁄

𝑥

) + (1

− 𝛿) (∫ (𝑦 − 𝑥)𝑑𝐹2(𝑦) + ∫ (𝑦 − 𝑥)𝑑𝐹2(𝑦)
𝑣𝑖

1 2⁄

1 2⁄

𝑥

) 

= 𝛿 (∫ (𝑦 − 𝑥)𝑑 (
3

2
𝑦) + ∫ (𝑦 − 𝑥)𝑑 (

1

2
𝑦 +

1

2
)

𝑣𝑖

1 2⁄

1 2⁄

𝑥

) + (1

− 𝛿) (∫ (𝑦 − 𝑥)𝑑 (
1

2
𝑦) + ∫ (𝑦 − 𝑥)𝑑 (

3

2
𝑦 −

1

2
)

𝑣𝑖

1 2⁄

1 2⁄

𝑥

) 

 

𝐷(𝑥, 𝑣𝑖) = 𝛿∫ (𝑦 − 𝑥)𝑑𝐹1(𝑦) + (1 − 𝛿)∫ (𝑦 − 𝑥)𝑑𝐹2(𝑦)
𝑥

0

𝑥

0

 

= 𝛿∫ (𝑦 − 𝑥)𝑑 (
3

2
𝑦) + (1 − 𝛿)∫ (𝑦 − 𝑥)𝑑 (

1

2
𝑦)

𝑥

0

𝑥

0

 

𝜓2(𝑣𝑖, 𝜆, 𝛿)

=  
4𝛿𝑣𝑖 − 4𝛿 − 6𝑣𝑖 + 2 + √(4𝛿𝑣𝑖 − 4𝛿 − 6𝑣𝑖 + 2)2 − (4𝛿𝑣𝑖

2 − 6𝑣𝑖
2 − 2𝛿 + 1)(4𝛿𝜆 + 2𝜆 − 4𝛿 − 2)

4𝛿𝜆 + 2𝜆 − 4𝛿 − 2
 

 

For 𝑣𝑖 ∈ (
1

2
, 1] and 𝑥 ∈ (

1

2
, 𝑣] 

𝑈(𝑥, 𝑣) = 𝛿∫ (𝑦 − 𝑥)𝑑𝐹1(𝑦) + (1 − 𝛿)∫ (𝑦 − 𝑥)𝑑𝐹2(𝑦)
𝑣𝑖

𝑥

𝑣𝑖

𝑥

 

= 𝛿∫ (𝑦 − 𝑥)𝑑 (
1

2
𝑦 +

1

2
) + (1 − 𝛿)∫ (𝑦 − 𝑥)𝑑 (

3

2
𝑦 −

1

2
)

𝑣𝑖

𝑥

𝑣𝑖

𝑥

 

 

𝐷(𝑥, 𝑣𝑖) = 𝛿 (∫ (𝑥 − 𝑦)𝑑𝐹1(𝑦) + ∫ (𝑥 − 𝑦)𝑑𝐹1(𝑦)
𝑥

1 2⁄

1 2⁄

0

) + (1

− 𝛿) (∫ (𝑥 − 𝑦)𝑑𝐹2(𝑦) + ∫ (𝑥 − 𝑦)𝑑𝐹2(𝑦)
𝑥

1 2⁄

1 2⁄

0

) 

= 𝛿 (∫ (𝑥 − 𝑦)𝑑 (
3

2
𝑦) + ∫ (𝑥 − 𝑦)𝑑 (

1

2
𝑦 +

1

2
)

𝑥

1 2⁄

1 2⁄

0

) + (1

− 𝛿) (∫ (𝑥 − 𝑦)𝑑 (
1

2
𝑦) + ∫ (𝑥 − 𝑦)𝑑(

3

2
𝑦 −

1

2
)

𝑥

1 2⁄

1 2⁄

0

) 
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𝜓3(𝑣𝑖 , 𝜆, 𝛿)

= 
4𝛿𝑣𝑖 − 4𝛿𝜆 − 6𝑣𝑖 + 2𝜆 + √(4𝛿𝑣𝑖 − 4𝛿𝜆 − 6𝑣𝑖 + 2𝜆)2 − (4𝛿𝑣𝑖

2 − 6𝑣𝑖
2 − 2𝛿𝜆 + 𝜆)(4𝛿 + 6𝜆 − 4𝛿𝜆 − 6)

4𝛿 + 6𝜆 − 4𝛿𝜆 − 6
 

To sum up, we have: 

 𝑏𝑛𝐼𝐵𝐸
𝐹𝑃 (𝑣𝑖, 𝛼, 1, 𝛿) = 𝜓1(𝑣𝑖, 𝛼, 𝛿)𝕀{0≤𝑣𝑖≤

1

2
}
+ 𝜓

2
(𝑣𝑖, 𝛼, 𝛿)𝕀{1

2
<𝑣𝑖≤1, 𝑏𝑛𝐼𝐵𝐸≤

1

2
}
+𝜓

3
(𝑣𝑖, 𝛼, 𝛿)𝕀{1

2
<𝑣𝑖≤1, 𝑏𝑛𝐼𝐵𝐸>

1

2
}
 

D.3. Estimation and Analysis 

The experiments fo CKO were conducted with  a Losers’ Feedback (LF) information treatment. 

The estimation outcomes are reported in Table D1 and indicate that in terms of goodness-of-fit of 

parameter-free models, AsP outperforms SBNE or equivalently nIBE, which is line with 

CONJECTURE 1. Otherwize, in terms of one-parameter models (i.e., which assume homogenous 

probability distortion or impulse weighting), nIBE(1, �̂�) outperforms AsP(�̂�) or nIBE(�̂�, 1), and this 

is confirmed when comparing the models estimated with heterogeneous traits.  

Table D2 reports on the models’ performance at the individual level. Likelihood ratio tests indicate 

that nIBE(1, �̂�𝑖) and nIBE(�̂�𝑖, 1) explain the data better than its parameter-free variant for 65% of 

participants whereas AsP(�̂�𝑖) does so for 52.5%. However, pairwise comparisons of the models’ 

goodness-of-fits indicate that in terms of parameter-free models, AsP explains best the data of 95% 

of participants, and that in terms of one-parameter models, nIBE(1, �̂�𝑖) and AsP(�̂�𝑖) rationalize the 

data of 57.55 and 30% of participants, respectively. 
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TABLE D2: ‘BEST’ MODEL FOR INDIVIDUALS 

 Log-likelihood ratio tests a  Parameter-free  Heterogeneous 

 
𝐻𝛼
𝐴𝑠𝑃  𝐻𝛼

𝑛𝐼𝐵𝐸 𝐻𝜆
𝑛𝐼𝐵𝐸  AsP 

nIBE or 

SBNE 
 AsP(�̂�𝑖) nIBE(�̂�𝑖 , 1) nIBE(1, �̂�𝑖) 

K1 

(40) 

          

21 

52.5% 

26 

65.0% 

26 

65.0% 

 38 

95.0% 

2 

5.0% 

 12 

30.0% 

5 

12.5% 

23 

57.5% 

Note: a: Number of participants for whom the one-parameter variant of a model (AsP or nIBE) fits the data significantly better than 

its non-parametric variant. 

 

TABLE D1: ESTIMATION OUTCOMES FOR FIRST-PRICE AUCTION EXPERIMENTS OF CHEN, KATUŠČAK AND OZDENOREN (2007). 

    Parametric models 

  Parameter-free  Homogenous  Heterogeneous 

Treatment 

(# Obs. | # Ind.) 
AsP 

nIBE or 

SBNE 

 AsP 

�̂� 

nIBE(�̂�; 1)  

or SBNE(�̂�) 

nIBE 

(1, �̂�) 

 AsP 

�̂�𝑖 

nIBE 

(�̂�𝑖 , 1) 

nIBE 

(1, �̂�𝑖) 

LF 

(1200 | 40) 

 

 

 

857.9 

 

 

 

545.3 

  

1.977 

[1.847, 2.108] 

1050.5 

 

3.810 

[3.585, 4.035] 

1164.6 

 

.140 

[.128, .153] 

1169.5 

 [1.20, 1.94, 3.11] 

‹2.742› 

 (2.419) 

1274.3 

[2.70, 3.79, 5.76] 

‹5.378› 

 (5.905) 

1402.6 

[.07, .14, .22] 

‹.189› 

 (.175) 

1408.5 

Note: Log-likelihood statistics in italics; Bold figures indicate the best log-likelihood statistic within a category (‘Parameter-free’, ‘Homogenous’ or ‘Heterogeneous’); 
***: Likelihood ratio test rejects the null that the one-parameter model is equivalent to its parameter-free variant in terms of goodness-of-fit at 𝛼 = 1%; **: 5%; *: 

10%. 
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