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Abstract

The liquidity effect, the short run negative response of interest rates to an increase in the

money supply, has been the subject of a large number of studies, most of which based on

the estimation of structural vector autoregressive models using standard instrumental vari-

able methods (see e.g. Gaĺı, 1992, Quarterly Journal of Economics). Using data from both

the United States and Australia, we show that these SVAR models are weakly identified,

and therefore the standard IV estimates of the structural coefficients and impulse response

functions are biased and inconsistent. We use statistical procedures robust to weak instru-

ments, along with the projection method of Dufour and Taamouti (2005, Econometrica),

to construct confidence sets with correct coverage rate for the structural parameters and

impact response functions of Gaĺı’s four variable IS-LM SVAR model. We find that these

confidence sets are in general unbounded or large, and further, contain zero, thus suggesting

that the evidence of the liquidity effect found in previous studies is empirically fragile. Our

findings align with Pagan and Robertson (1998, Review of Economics and Statistics) who

first pointed out possible identification issues in SVAR models.
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I Introduction

The role of a central bank involves maintaining the stability of the domestic currency and

upholding the economic prosperity and welfare of domestic citizens. Achieving these goals

often requires performing open market operations, such as manipulating the money sup-

ply, to control and change the so-called “federal funds rate” for the United States (US),

or “cash rate” for Australia. Monetary policy impacts economic activity and indicators–

such as inflation– through a transmission mechanism which arises through a number

of channels, including interest rate, asset price, and savings channels (see e.g. Mishkin,

1996).

This paper examines the identification of the structural models often used in the liter-

ature to provide evidence of the existence of the liquidity effect through the interest rate

channel of the monetary transmission mechanism. First coined by Friedman (1969), the

liquidity effect refers to the short run decline in nominal interest rates in response to an

increase in the money supply. Although Pagan and Robertson (1998) argue that these

structural models may not be identified, few studies have addressed this question using

statistical inference procedures robust to weak instruments. This study complements the

recent work of Chevillon et al. (2019) on the identification of SVAR models by investi-

gating the identification of the four variable Phillips curve-augmented IS-LM model by

Gaĺı (1992) using data from both the US and Australia.

The empirical evidence of the liquidity effect relies upon different approaches, espe-

cially with regards to the choice of the monetary aggregate measure, thus leading to

conflicting results with respect to its existence. Indeed, the money supply is often sep-

arated into categories of monetary aggregates to allow the central bank to analyse the

effects of its monetary policy. These monetary aggregates are classified differently de-

pending on the country, and in the US, the narrowest measure of money is M0 (or the

monetary base), which comprises of all notes and coins in circulation. M1 is comprised

of M0 and demand deposits, M2 is comprised of M1, money market shares, and savings

deposits, and M3 is comprised of M2 and all other institutional deposits. Most studies

on the liquidity effect use narrower monetary aggregates as it is most closely related to

1



open market operations. For example, Bernanke and Mihov (1998) find little basis for

rejecting the liquidity effect in the US using non-borrowed reserves. Fung and Gupta

(1997) find evidence of a liquidity effect in Canada, using a vector autoregressive (VAR)

model. In contrast, Brischetto et al. (1999) do not observe a significant liquidity effect in

Australian data using M1. Rather, they suggest that a detailed specification of monetary

policy transmission is required to observe a significant liquidity effect.

Based on these differing results and methodologies, Pagan and Robertson (1998) take

a critical view of empirical studies using structural models. Specifically, they note that

the IVs used to estimate these macroeconomic models may be weak, thus rendering the

standard asymptotic theory unreliable. We use recent statistical procedures developed

in the literature of weak instruments to investigate the identification of these structural

models. Our results confirm that the instrumental variables used in these models are

weak, making the standard IV estimates of the structural parameters and the impulse

response functions highly unreliable. We then develop joint and individual weak IV

robust confidence sets for both the structural parameters and the instantaneous impact

response functions using the projection technique in Dufour and Taamouti (2005) and

Doko Tchatoka and Dufour (2014). These confidence regions are in general unbounded

or large, and further, contain zero, thus confirming the fragility of the evidence of the

liquidity effect.

Although we focus predominantly on the four variable Phillips curve-augmented IS-

LM model, our analysis can easily extend to other SVAR models often used in the liter-

ature; e.g., the extended SVAR framework of Dungey and Pagan (2000, 2009).

The structure of this paper is as follows. Section II presents a brief summary of

the relevant existing literature. Section III presents the empirical specification of the

model and discusses the identification of the model. Section IV describes the data and

presents results of the standard 2SLS estimates of the SVAR model. The construction

of the identification-robust confidence sets are presented in Section V for the structural

parameters of the SVAR model, and Section VI for the instantaneous impact response

functions. Conclusions are drawn in Section VII.
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II Literature review

The literature distinguishes two main types of vector autoregressive (VAR) models; re-

cursive and nonrecursive. Recursive VAR models construct the error terms by using

contemporaneous values as regressors such that they are uncorrelated with the errors

in the preceding equations; Stock and Watson (2001). On the other hand, nonrecur-

sive SVAR models require economic theory to determine contemporaneous links between

variables; Stock and Watson (2001).

Most methodologies examining the existence of the liquidity effect utilise recursive

structural models. In contrast, the evidence of the liquidity effect using nonrecursive

approach lacks consensus. For example, Leeper and Gordon (1992) do not find clear

evidence of the liquidity effect using an SVAR model that includes the monetary base,

the federal funds rate, the consumer price index, and the industrial production index. On

the other hand, Christiano and Eichenbaum (1991) find evidence of the liquidity effect

using non-borrowed reserves as the monetary aggregate, along with the other variables

described above. In fact, evidence of the liquidity effect using recursive models are often

reported in studies that utilise a narrower measure of money.

Gaĺı (1992) reports evidence of a liquidity effect in a Phillips curve-augmented IS-LM

model, using postwar US data from 1955Q1 to 1987Q3. His model includes money, inter-

est rates, prices and Gross National Product (GNP), along with four exogenous shocks:

the aggregate supply, money supply, money demand, and investment-savings shocks. Gaĺı

(1992) uses M1 as the monetary aggregate and identifies his model using both short- and

long-run restrictions. His model is presented in detail in Section III as it constitutes

the foundation of this study. Gordon and Leeper (1994) examine and compare money

supply and demand shocks in both the 1970s and 1980s using US data. Their model

contains seven variables and is identified using contemporaneous exclusion restrictions.

These variables are the federal funds rate, the consumer price index, the industrial pro-

duction, the unemployment rate, 10-year Treasury bond yield, and a commodity price

index. The monetary aggregate they use is either total reserves or M2. Interestingly,

they find evidence of a liquidity effect in the 1980s, in contrast to the 1970s, and then
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conclude that this may be a result of the dynamic impacts of identified monetary policy

shocks in the 1980s. Their finding is robust to the type of monetary aggregate used (total

reserves or M2 ). Lastrapes and Selgin (1995) identify money supply shocks in an IS-LM

model with long-run money neutrality restrictions, using monthly US data from 1959Q1

to 1993Q4. They argue their identification procedure is consistent with a larger num-

ber of theoretical models, where long-run money neutrality restrictions are placed. The

variables in their model include the nominal interest rate, output, real money stock and

the nominal money stock. They report evidence of the liquidity effect which is robust

to monetary aggregate alternatives, such as M0, M1, or M2. The above three studies

were comprehensively analysed by Pagan and Robertson (1998) who suggest that the IVs

used may be weak, thus rendering results sensitive to the estimation period covered. As

mentioned in the introduction, our aim is to investigate the identification of these models

using statistical inference procedures robust to weak instruments.

IV methods, such as 2SLS, are usually employed to identify causal effects in empirical

studies or to address omitted variable and measurement error issues. However, one prob-

lem associated with the use of standard IV methods is their inability to produce reliable

inference on model parameters when instruments have limited explanatory power (weak

IVs). It is now well known that under weak IVs, standard asymptotic theory breaks

down, and the usual t- or Wald-type tests and related confidence intervals are unreli-

able. This has led to some extensive research within the field of weak IVs, in particular

on the ability to conduct valid statistical inference even when the structural parameters

are weakly identified. Comprehensive reviews of this literature are presented in Stock

et al. (2002), Dufour (2003), Andrews and Stock (2007), Poskitt and Skeels (2013), and

Mikusheva (2013).

One of the statistics known to be robust to weak instruments is the Anderson and

Rubin (1949, AR) statistic.1 The AR method allows one to test hypotheses on the struc-

tural coefficients and to obtain confidence sets for these parameters (joint or individuals).

One advantage of this procedure is that, though it primarily tests the null hypothesis

1Also, see Kleibergen (2002) K-statistic and Moreira (2003) CLR-statistic.
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specified on the joint structural parameters, analytical expressions of the confidence sets

for individual elements of the structural parameters or their linear combinations can be

obtained through projection techniques originally suggested in Dufour (1990). Dufour

and Taamouti (2005) provide a closed-form solution for the projection-based confidence

sets using the joint confidence region of the structural parameters obtained by invert-

ing the AR statistic. They also derive the necessary and sufficient conditions under

which these confidence sets are bounded. These conditions are usually not met under

weak IVs, thus leading to unbounded confidence regions (which can be for example,

the entire real line if the quality of the IVs is very poor). Doko Tchatoka and Dufour

(2014) generalise the AR procedure in Dufour and Taamouti (2005) to models with con-

ditional heteroskedasticity and non normal errors, and they also provide a framework for

identification-robust inference for covariance parameters. We use the latter framework

to propose identification-robust confidence sets for the instantaneous impact response

functions of SVAR models.

III Empirical model

We consider the following four variable SVAR model from Gaĺı (1992):

B0Yt = B1(L)Yt + εt, (III.1)

where Yt = (∆gapt,∆it, it−∆pt,∆mt−∆pt)
′, B0 is a 4×4 matrix of structural parameters

with 1’s on its diagonal, B1(L) is a 4 × 4 matrix of lag polynomials,2 and εt is a 4-

dimensional vector of shocks (errors). Within Yt, ∆gapt is the change in output between

quarters, ∆it is the change in the 3-month Treasury bill rate between quarters, it−∆pt is

the real interest rate, ∆mt−∆pt represents the change in the real money stock (M1 ). B0

is the matrix in which contemporaneous restrictions are placed, while long-run restrictions

2In the empirical specifications, the Akaike information criterion (AIC) suggests that the maximum
lag length is p = 4 for each of the variables in Yt, as shown in Table 7 of the Appendix. Therefore, there
are 16 lagged variables in each equation, which is consistent with the results in Gaĺı (1992) and Pagan
and Robertson (1998).
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are usually placed on the element of the matrix B1. The aim of this paper is twofold.

First, we investigate the identification of model (III.1) when standard IV methods, such

as the 2SLS procedure, are employed to estimate the structural parameters in B0. Second,

we build confidence sets with correct coverage rate for both these structural parameters

and instantaneous impact response functions, including when model (III.1) is weakly

identified. Similar to previous studies, we specify B0 as:

B0 =



1 b012 b013 b014

b021 1 b023 b024

b031 b032 1 b034

b041 b042 b043 1


,

where bij, i = 1, 2, 3, 4; j = 2, 3, 4 are the structural parameters of interest. Thus, we can

write the system (III.1) in extensive form as:

∆gapt = −b012∆it − b013(it −∆pt)− b014(∆mt −∆pt) + lags+ ε1t; (III.2)

∆it = −b021∆gapt − b023(it −∆pt)− b024(∆mt −∆pt) + lags+ ε2t; (III.3)

it −∆pt = −b031∆gapt − b032∆it − b034(∆mt −∆pt) + lags+ ε3t; (III.4)

∆mt −∆pt = −b041∆gapt − b042∆it − b043(it −∆pt) + lags+ ε4t, (III.5)

where (III.2)–(III.5) represent the aggregate supply (AS), money supply (MS), money

demand (MD), and investment-savings (IS) equations respectively. Gaĺı (1992) identifies

two cointegrating relations among the 4 right-hand side (RHS) variables in (III.2)–(III.5):

2 permanent shocks and 2 transitory shocks, which means that two restrictions are re-

quired in order to identify the system. He thus imposes the following two restrictions:

– ε3t and ε4t are transitory,

– and ε2t has no long-run effect on gapt.
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Surprisingly, Gaĺı’s (1992) empirical identification scheme does not impose a long-run

effect of money on output, but rather imposes short-run restrictions to identify the system.

Pagan and Robertson (1998) deemed this as inconsistent with the theory. We therefore

use the framework of Ouliaris et al. (2016) as it addresses Pagan and Robertson’s ( 1998)

critique, and rewrite the AS equation as:

∆gapt = b012∆
2it + b013∆(it −∆pt) + b014∆(∆mt −∆pt) + lags+ ε1t, (III.6)

where a second difference of it appears in (III.6) due to the fact that ε2t has no long-

run effect on output, i.e., the coefficients on ∆it and ∆it−1 have the same magnitude

but opposite sign. In addition, Ouliaris et al. (2016) also showed that Gaĺı’s (1992) MS

equation is incorrect because it involves the levels of the cointegrating errors rather than

the changes. We thus modify our model by using their MS equation:

∆it = b021∆gapt + b023∆(it −∆pt) + b024∆(∆mt −∆pt) + lags+ ε2t. (III.7)

Since the MD and IS equations (i.e., eqs. (III.4) & (III.5) respectively) are left unchanged

in (III.2)–(III.5) as they contain the transitory shocks, the system we consider is:

∆gapt = b012∆
2it + b013∆(it −∆pt) + b014∆(∆mt −∆pt) + lags+ ε1t; (III.8)

∆it = b021∆gapt + b023∆(it −∆pt) + b024∆(∆mt −∆pt) + lags+ ε2t;(III.9)

it −∆pt = −b031∆gapt − b032∆it − b034(∆mt −∆pt) + lags+ ε3t; (III.10)

∆mt −∆pt = −b041∆gapt − b042∆it − b043(it −∆pt) + lags+ ε4t. (III.11)

A fundamental distinction between the system (III.8)–(III.11) and the framework of

Chevillon et al. (2019) is the treatment of the unit root in the money supply variable it.

While our system directly imposes a unit root on it as suggested by the theory, Chevil-

lon et al. (2019) model the near unit root behaviour of it. However, both frameworks
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imply that the instruments are likely weak, and if so, the standard IV methods (such

as the 2SLS estimation) yield biased results. Specifically, Pagan and Robertson (1998)

show that it−1 becomes a weak IV for the AS (output) equation under the framework of

Chevillon et al. (2019). This obviously translates to ∆2it−1 being likely a weak IV for

the output equation in the Ouliaris et al.’s (2016) framework described by the system

(III.8)–(III.11). Clearly, the main implication of both frameworks is the poor quality

of the instruments that is the consequence of imposing long-run restrictions. Although

the two frameworks differ in the way these long-run restrictions are handled, there is no

impediment to applying a weak instrument robust method (such as the AR-procedure)

in either case.

Before addressing the weak IV issues, we first present how this model is often esti-

mated. The instrumental variables used in each equation appear in Table 1, and the

system is identified by sequential 2SLS method (see Pagan and Robertson, 1998).

1. Firstly, the AS equation is estimated using 2SLS. The dependent variable is ∆gapt,

whilst the instruments used for the endogenous variables, ∆2it, ∆(it − ∆pt), and

∆(∆mt − ∆pt), are ∆2it−1, it−1 − ∆pt−1, and ∆mt−1 − ∆pt−1, respectively. The

fitted residuals, ε̂1t, are used as an IV in subsequent equations.

2. Secondly, the MS equation is estimated using 2SLS. The dependent variable is ∆it,

whilst the instruments used for the endogenous variables ∆gapt, ∆(it −∆pt), and

∆(∆mt − ∆pt), are ε̂1t, it−1 − ∆pt−1 and ∆mt−1 − ∆pt−1 respectively. The fitted

residuals, ε̂2t, are used as an IV in subsequent equations.

3. Thirdly, the MD equation where it−∆pt is the dependent variable is estimated using

2SLS. The instruments used for the endogenous variables ∆gapt, and ∆it, are ε̂1t

and ε̂2t, respectively. However, an IV is required for ∆mt −∆pt. We construct this

IV using the fitted residuals ût from the OLS regression of ∆gapt on the constant

and the first four lags of ∆gapt, ∆it, it−∆pt, and ∆mt−∆pt. After estimating the

MD equation, the fitted residuals ε̂3t are used as an IV in the final equation.

4. Lastly, the IS equation is estimated using 2SLS. The dependent variable is ∆mt −
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∆pt, whilst the instruments used for the endogenous variables, ∆gapt, ∆it, and

it −∆pt, are ε̂1t, ε̂2t and ε̂3t, respectively.

Table 1: List of instruments used

∆yt ∆2it it −∆pt ∆mt −∆pt

AS - ∆2it−1 it−1 −∆pt−1 ∆mt−1 −∆pt−1

MS ε̂1t - it−1 −∆pt−1 ∆mt−1 −∆pt−1

MD ε̂1t ε̂2t - ût

IS ε̂1t ε̂2t ε̂3t -

IV Data and standard 2SLS estimation

The data used to estimate the SVAR model in both the US and Australia are: logarithm

of gross national production (GNP, named y); 3-month Treasury bill rate (i); logarithm

of the Consumer Price Index (p), and logarithm of real money stock (M1, named m).

The US data were obtained from the Federal Reserve of St Louis database (FRED)

for the period 1959Q1 to 2006Q4. The M1 data from 1955Q1 to 1958Q4 were obtained

from the Federal Reserve Bulletin. As GNP is quarterly, the other monthly series were

converted into a quarterly frequency using geometric means. The Australian data were

sourced from the Australian Bureau of Statistics and the FRED database for the time

period 1971Q3 to 2006Q4. We excluded the Global Financial Crisis (GFC) period in

order to rule out any biases and effects that could result from the zero lower bound that

occurred during the crisis. Indeed, the inclusion of these data may have devaluated any

liquidity effect that could have been otherwise evident over the sample period.

The descriptive statistics are given in the appendix (Table 6) for both the US and

Australia. Over the sample period, both countries have higher interest rates in comparison

to the current financial environment. For example, the maximum 3-month Treasury bill

rate, i, over the sample period was around 15.04% (US) and 19.47% (Australia). It is

also obvious that the standard deviations of the interest rate i are the highest in both
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countries compared to the standard deviations of the other three variables. As such, we

expect the liquidity effect to be quite evident as interest rates move further down before

reaching the zero lower bound. This could also explain why evidence of the liquidity effect

is sensitive to the sample period used. In addition, the mean and standard deviation of

m is greater in Australia, which could potentially lead to a more pronounced liquidity

effect in the Australian case.

Table 2 below presents the 2SLS estimates of−B0 from the system (III.8)–(III.11), and

the results reveal many inconsistencies with regards to previous studies. First, with the

exception of the AS equation for the US data, the signs of the 2SLS estimates mismatch

those in Pagan and Robertson (1998). Second, in many instances, the 2SLS estimates do

not have the expected sign in either countries. For example in both countries, a monetary

supply shock has a positive impact on interest rate, and the real interest rate shock has

a positive impact on money supply, while an increase in the real money stock affects

negatively the money supply. These results are contrary to the findings of Pagan and

Robertson (1998). Third, where the signs coincide with those in Pagan and Robertson

(1998), the magnitudes differ significantly. In the case of the US for example, the coeffi-

cient on ∆it in the IS equation is −7.944 in Pagan and Robertson (1998), compared with

−2.180 in Table 2. This highlights the sensitivity of the 2SLS estimates to the sample

period. Pagan and Robertson (1998) estimate the model for the period 1959Q1–1993Q3,

whereas our study covers the extended period 1955Q1–2006Q4. These differences were

also noted by Leeper and Gordon (1992) who show that the signs of the 2SLS estimates

change across sub-periods between 1954 and 1990. As the Schwarz Bayesian information

criterion (SBIC) selects 2 as the optimal number of lags to include in the SVAR, we have

also estimated the model with 2 lags (see Table 8 in the appendix) and the results align

with those reported in Table 2.

Figures 1-2 show the impulse responses of the nominal interest rate to a shock in

money supply from the 2SLS estimation of the SVAR model for both countries. In each

figure, the dashed-red lines represent the 95% confidence bounds while the solid-blue line

represents the impulse responses. Figure 1 is the reaction of the nominal interest rate
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Table 2: 2SLS estimate of −B0

US (1955Q1-2006Q4)

∆yt ∆it it −∆pt ∆mt −∆pt

AS -1 0.375 -0.371 0.201
(0.314) (0.312) (0.189)

MS 0.017 -1 1.004∗∗∗ −0.317∗∗∗

(0.088) (0.003) (0.086)

MD 0.017 1.001∗∗∗ -1 -0.056
(0.067) (0.001) (0.070)

IS −0.790∗∗∗ −2.180∗∗∗ 2.160∗∗∗ -1
(0.161) (0.349) (0.348)

AUSTRALIA (1971Q2-2006Q4)

∆yt ∆it it −∆pt ∆mt −∆pt

AS -1 -0.162 0.160 -0.154
(0.178) (0.176) (0.163)

MS 0.043 -1 1.003∗∗∗ -0.032
(0.104) (0.003) (0.090)

MD -0.064 1.000∗∗∗ -1 0.093
(0.052) (0.001) (0.023)

IS 0.0170 −1.151∗∗∗ 1.146∗∗∗ -1
(0.180) (0.284) (0.284)

Robust standard errors in (·).
Significance at 10%, 5% and 1% nominal level is indicated by ∗, ∗∗ and ∗∗∗ respectively.
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to a temporary and exogenous increase in the money supply, while Figure 2 presents the

accumulated impulse responses of the nominal interest rate to the same shock.

Considering first Figure 1, evidence of a liquidity effect is observed in both countries.

In the US [Figure 1-(a)], the interest rate delves into negative territory between periods

2 and 3 (i.e., between 6 and 9 months) before rebounding to a positive value in period

5 and converging to zero at approximately period 15 (more than 3 years). In Australia

[Figure 1-(b)], the interest rate declines to a negative value in period 2 (i.e., in the 6th

month) before rebounding to a positive value and converging to zero at approximately

period 20 (i.e., 5 years). This negative short-run response of the interest rate represents

the characteristic of a liquidity effect. This is an effect that has been well documented

throughout the literature (e.g., see Gaĺı, 1992) and was widely publicised in the mid-90s.

The fact that this (temporary) effect takes such a long time before fading is indicative of

identification issues.

Figure 1: Interest rate response to an exogenous increase in money supply

(a) US (b) AUSTRALIAN

We now consider the accumulated impulse response of the nominal interest rate to an

exogenous increase in the money supply (Figure 2 below).3 As seen in both countries, the

liquidity effect is still evident. In the US, the cost of borrowing (cost of interest) declines

between periods 2 and 3 before increasing again and then converging to zero around

period 60 (approximately 15 years after the initial shock). Again, this seems quite long

3These accumulated impulse responses illustrate the importance of the long-run effect of an exogenous
increase in money supply. They are often referred to as the total multiplier and are of interest when
the variables used are first differences, as is the case here. For the interest rate, the temporary impulse
response captures the return effects whilst the accumulated impulse response reflects the price effects.
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and suggests that the SVAR model is potentially weakly identified. In Australia, the

price (cost) of interest declines in period 2 before fluctuating over time and converging

to zero around period 60 (approximately 15 years after the initial shock). The effect

of the temporary shock presented in Figure 1 is included in these accumulated impulse

responses, however the shock to the rate of return on interest does not appear to have

significant weighting on the total price effect.

Figure 2: Accumulated response of interest rate to an exogenous increase in money supply

(a) US (b) AUSTRALIAN

Similarly to the 2SLS estimates of the structural coefficients (−B0), the accumulated

impulse responses for the US differ to those presented in Ouliaris et al. (2016). In partic-

ular, Ouliaris et al. (2016) do not find significant evidence of the liquidity effect, which

again suggests that the model is very sensitive to the sample period used. The fact that

the Durbin-Wu-Hausman (DWH) tests did not find evidence of endogeneity in the AS

equation (see Table 9 in the appendix) could also be due to weak instrument issues. In-

deed, Doko Tchatoka (2015) and Doko Tchatoka and Dufour (2018) show that DWH-type

tests have low power against endogeneity under weak identification. Therefore, failing to

reject the exogeneity of the regressors in the AS equation does not necessarily imply that

those regressors are exogenous. Evidence of endogeneity is however shown in the other

equations of the system (see Table 9 in the appendix), meaning that the instruments used

in these equations may not be very weak. The Stock and Yogo’s (2005) weak IV test (see

Tables 10–11 in the appendix) confirms that the IVs are weak, especially in the AS and

MS equations. In contrast, we could not find evidence of weak instruments in either the
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MD or IS equations.

Restricting the 2SLS estimation to a shorter sample period (1955Q1 to 1987Q3) corre-

sponding to Gaĺı’s (1992) setting for the US, Table 12 in the appendix shows that whilst

the signs of the coefficients remain the same compared to Table 2, their magnitudes differ

substantially. This is particularly evident in the AS equation, where both the nominal

interest rate and the real interest rate have a greater bearing on output. Furthermore, we

find that instruments are even weaker in the short sample (Table 13 versus Table 10 in

the appendix). As such, the 2SLS estimates of the structural parameters are biased, i.e.,

there is a positive probability that the 2SLS confidence bands in Table 2 do not contain

the parameter true unknown values (Dufour, 1997). Since the impulse response functions

(IRFs) depend on the structural parameters, they are also not identified. This includes

the IRFs of the MD and IS equations if further restriction are not imposed, as these IRFs

depend on the structural parameters in B0. As a result, the evidence of the liquidity effect

found with the 2SLS estimation may be over-estimated. In particular, the fact that the

accumulated impulse responses of the nominal interest rate to an exogenous increase in

the money supply lasted 15 years (for the US) and 20 years (for Australia) before dying

out illustrates this bias. To produce valid confidence intervals for both the structural

parameters and impulse response functions of the SVAR model, it is thus crucial to use

statistical procedures robust to weak instruments.

V Valid confidence sets for B0

In this section, we construct confidence sets with correct coverage rate for the structural

parameters in B0, including those in the AS and MS equations that are weakly identified.

For this purpose, we adopt the notations and methodology in Dufour and Taamouti

(2005). To proceed, consider the following classical linear IV regression framework:

y = Xβ + Z1γ + e (V.1)

X = Z1Π1 + Z2Π2 + V, (V.2)
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where y : T × 1 is the dependent variable (T is the sample size), X : T ×G is a matrix of

endogenous variables, Z1 and Z2 are T ×K1 and T ×K2 matrices of exogenous variables,

β and γ are G × 1 and K1 × 1 vectors of unknown structural coefficients. Π1 and Π2

are K1 × G and K2 × G matrices of unknown reduced-form coefficients, e = (e1, ..., eT )′

is a vector of structural shocks, and V = [V ′1 , ..., V
′
T ]′ is a T × G matrix of reduced-

form disturbances. Equation (V.1) is the structural equation of interest and (V.2) is

the reduced-form representation for X. Z2 is the matrix of instruments excluded from

the structural equation (V.1) while Z1 contains the included instruments. We assume

the model is at least exactly identified (i.e., K = K1 + K2 ≥ G) and the matrix Z =

[Z1, Z2] has full-column rank k. To illustrate how the generic framework in (V.1)–(V.2)

applies to the SVAR system (III.8)–(III.11), consider for example the money demand

(MD) equation (III.10). In this case, we have y ≡ i − ∆p (real interest rate), X ≡

[∆gap,∆i,∆m − ∆p], Z1 ≡ lags, Z2 ≡ [ε̂1, ε̂2, û], and the structural parameter vector

of interest is β = (−b031,−b032,−b034)′. Similarly, the AS, MS, and MS equations can be

framed in that way, i.e., the specification (V.1)–(V.2) also applies to these equations.

If the instruments in Z2 are weak, the structural parameter vector β is not identified

in (V.1)–(V.2), so the standard IV methods (t-based tests and related confidence inter-

vals) are unreliable in the sense that they may not contain the true parameter values

with positive probability (see e.g. Dufour, 1997). It is nonetheless possible to construct

confidence regions for β with correct coverage probability, by inverting for example the

Anderson and Rubin (1949) AR-statistic, Kleibergen (2002) K-statistic, or Moreira (2003)

conditional likelihood ratio (CLR) statistic. In this section, we are interested in building

these confidence regions for both the joint parameter vector β as well as its components.

Although they may sometimes be difficult to interpret, the graphical representations of

these joint confidence regions can be useful for at least two reasons. First, these joint

confidence regions always have the correct coverage rate, as opposed to their individual

projection-based counterparts. Second, this visualisation can help to have a better under-

standing of which individual components of the joint parameter vector can be identified

and which ones cannot be identified.
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To show how these joint confidence regions are usually constructed, we consider the

problem of testing the null hypothesis

H0 : β = β0 (V.3)

in (V.1)–(V.2), where β0 is the unknown population parameter vector. The AR statistic

for H0 is given by:

AR(β0) =
(y −Xβ0)′[M(Z1)−M(Z)](y −Xβ0)/K2

(y −Xβ0)′M(Z)(y −Xβ0)/(T −K)
, (V.4)

where P (B) = B(B′B)−1B′ for any full rank matrix B, and M(B) = I − P (B). If e is

i.i.d normal and the instruments in Z2 are valid, then AR(β0) ∼ F (K2, T − K) under

H0, meaning that F -type critical values can be used for inference. In this case, the test

rejects H0 at nominal level α if AR(β0) > Fα(K2, T −K), where Fα(K2, T −K) is the

1 − α critical value of the F -distribution with (K2, T − K) degrees of freedom. This

distributional result holds regardless of the rank of Π2 (which is a measure of instrument

strength), and the normal distributional assumption on u can also be relaxed (see e.g.

Doko Tchatoka and Dufour, 2014).

Here, we use the AR-statistic for several reasons. First, it is conceptually simple

to implement in practice. Second, the analytical expressions of the confidence sets for

both the vector β0 and the linear transformations of β0 are readily available (see Dufour

and Taamouti, 2005), while closed-form expressions are not always available with the K

or CLR statistic. Third, the AR method is robust to an arbitrary nonlinear unknown

functional specification of the reduced-form equation (V.2), as well as misspecification of

this equation;4 see Dufour and Taamouti (2007). And finally, the AR method is valid

in small samples even when the structural errors are heteroskedastic with possibly non-

Gaussian distribution (Doko Tchatoka and Dufour, 2014).

4Such as the exclusion of relevant instruments in Z2.
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(i) Joint confidence regions for B0

The confidence set for β with level 1 − α is obtained by inverting the statistic in (V.4),

i.e.

Cβ(α) = {β0 : AR(β0) ≤ Fα(K2, T − k)}. (V.5)

Dufour and Taamouti (2005) show that Cβ(α) in (V.5) can be expressed as a quadratic-

linear form, otherwise known as quadrics, i.e.

Cβ(α) = {β0 : β′0Aβ0 + b′β0 + c ≤ 0}, (V.6)

whereA = X ′HX, b = −2X ′Hy, c = y′Hy, andH ≡ HAR = M(Z1)−
[
1+K2Fα(K2,T−K)

T−K

]
M(Z).

One feature of the confidence sets in (V.6) is that they can be unbounded with positive

probability, which happens to be the case when the quality of instruments is poor (Du-

four, 1997). Dufour and Taamouti (2005) provide the necessary and sufficient conditions

under which Cβ(α) is a bounded set, which requires the concentration matrix A = X ′HX

to be positive definite. This condition can be verified easily from the observed data.

In what follows, we will use (V.6) to derive the joint confidence sets for the structural

parameters of the AS, IS, MS, and MD equations. Table 3 summarizes the values of

the concentration matrix A, the vector b, and the scalar c obtained from the observed

data for both the US and Australia in each equation. Note that in each equation, there

are three structural parameters (i.e., β is 3 × 1). So writing the quadrics in (V.6) in

matrix form is not as informative as when graphical representations are used. Therefore,

we have opted to plot these confidence regions in 3D (see Figure 3). For each case, the

plotted surface shows the values of the joint parameter β for which H0 is not rejected

given the observed data. As such, they are constructed by taking an isosurface at zero

of the quadratic function in (V.6) for different values of β. These plots are intervals on

the real line when β is scalar. Otherwise they are either ellipsoids (i.e., surfaces that

may be obtained from a sphere by deforming it by means of directional scalings, or more

generally, of an affine transformation), paraboloids (quadric surfaces that have exactly
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one axis of symmetry and no center of symmetry), or hyperboloids (surfaces that may be

generated by rotating a hyperbola around one of its principal axes).

Figure 3 shows these quadric surfaces (i.e., the confidence regions Cβ(α)) for each

equation of the system (III.8)–(III.11) with both the US and Australian data. Since for

both countries the concentration matrix A = X ′HX in the AS and MS equations contains

one negative eigenvalue, the joint confidence regions of the structural parameters are

unbounded in these two equations (Figures 3a-3d). In contrast, the concentration matrix

is positive definite for both countries in the MD and IS equations, thus leading to bounded

joint confidence sets (Figures 3e-3h). Looking at each graph specifically, there appears to

be a difference in the form of these joint confidence regions between equations and across

countries. For the AS equation for example, the joint confidence region is a paraboloid for

the US (Figure 3a) with a hole opening up for larger values of β1. The grid numbers in the

three axes corresponding to βj, j = 1, 2, 3 are very large, indicating that the confidence

region is not delimited in any of the axes. In contrast, the confidence region for Australia

for the AS equation (Figure 3b) consists of unbounded ellipsoids, with an empty space

in the middle. This empty space is evident in the projection-based individual confidence

interval presented in the next section. As both confidence regions are unbounded (i.e.,

not delimited in any axis), the AS equation is not well identified in either countries, thus

evidencing weak instrument issue in this equation. Figures 3c-3d present the confidence

region for the MS equation in both countries. Similar to the AS equation, these confidence

regions are unbounded, as shown by the large values of βj, j = 1, 2, 3 covered by each

axis. These confidence regions appear to be hyperboloids for both the US (Figure 3c)

and Australia (Figure 3d). Holes can clearly be seen between the two planes, and are

also evident in the individual projection-based confidence intervals as they are unions of

semi-infinite sets. Similar to the AS equation, these confidence regions indicate that the

MS equation is not well-identified in either countries.

Now consider the joint confidence regions of the structural parameters of the MD equa-

tion presented in Figures 3e-3f. As stated earlier, these confidence regions are bounded

and appear to be distorted ellipsoids for both countries. Although there does appear to
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Table 3: Values of A, b and c from observed data

US

A b c

AS

 −0.3871 −0.3636 −0.0067
−0.3636 −0.3392 −0.0068
−0.0067 −0.0068 0.0019

  −0.2514
0.4389
−0.0055

 0.0009

MS

 0.0121 −0.4099 −0.0010
−0.4099 10.4022 0.0502
−0.0010 0.0502 0.0017

  0.4408
−244.66
0.8218

 10.4656

MD

 0.0126 −0.0514 −0.0002
−0.0514 71.7834 0.0729
−0.0002 0.0729 0.0014

  −15.641
−139.28
−0.0331

 71.7573

IS

 0.0108 −0.3155 −0.3144
−0.3155 34.9918 35.0470
−0.3144 35.0470 35.1040

  −0.0131
0.2454
−0.0331

 0.0095

AUSTRALIA

A b c

AS

 28.4568 28.500 −0.6227
28.5003 28.552 −0.6173
−0.6227 −0.6173 0.0136

  −0.0487
−0.6377
0.0079

 0.0001

MS

 0.0181 0.1783 0.0105
0.1783 25.973 −0.5528
0.0105 −0.5528 0.0226

  −0.6405
−563.06
2.6523

 26.2622

MD

 0.0188 0.0167 0.0019
0.0167 43.876 1.1722
0.0019 1.1722 0.0694

  −62.655
−300.97
−15.524

 44.9446

IS

 0.0176 −0.1712 −0.1713
−0.1712 165.64 165.80
−0.01713 165.80 165.96

  −0.0447
1.9852
−15.524

 0.0052
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be a hole between the two planes in both confidence regions, the projected individual

confidence intervals are bounded, as shown in the next subsection. Therefore, the IVs

are not very weak in the MD equation. Finally, looking at the confidence regions for the

structural parameters of the IS equation (Figures 3g-3h), we see that they are bounded

distinct ellipsoids for both countries which is indicative of an identified model.

Clearly, the unboundedness of the joint confidence regions in both the AS and MS

equations is consistent with the IV diagnostic tests, thus corroborating the concerns of

Pagan and Robertson (1998). Meanwhile, IVs are not very weak in the MD and IS

equations, which results in bounded joint confidence regions in these equations.
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Figure 3: Joint confidence region for B0

(a) Aggregate supply: US (b) Aggregate supply: AUSTRALIA

(c) Money supply: US (d) Money supply: AUSTRALIA

(e) Money demand: US (f) Money demand: AUSTRALIA

(g) Investment saving: US (h) Investment saving: AUSTRALIA
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(ii) Confidence intervals for the components of B0

The methodology we use to construct the joint confidence regions in Section (i) also

provides a framework to obtain confidence intervals for individual coefficients in each

equation of the system. This is done using the projection method of Dufour and Taamouti

(2005).

More generally, suppose that we want to build a confidence set, Cw′β, for a linear

transformation g(β) = w′β for β, where w is a fixed vector with the same dimensions as

β. Dufour and Taamouti (2005) show that this confidence set can be characterized as

Cw′β ≡ g[Cβ] = {δ0 : δ0 = w′β where β′0Aβ0 + b′β0 + c ≤ 0}, (V.7)

which intuitively describes the projection of Cβ in the plane spanned by w′β. To derive

the analytic expression of Cw′β, we focus on the case where the concentration matrix A

is non-singular5 and w 6= 0. Under these conditions, Dufour and Taamouti (2005) show

that Cw′β takes one of the following forms:

1. If A is positive definite, then

Cw′β = [w′β̃ −
√
d(w′A−1w), w′β̃ +

√
d(w′A−1w)] if d ≥ 0

= ∅ if d < 0,

where d ≡ 1
4
b′A−1b− c and β̃ = −1

2
A−1b;

2. If A has exactly one negative eigenvalue and d < 0, then

Cw′β = ]−∞, w′β̃ −
√
d(w′A−1w)] ∪ [w′β̃ +

√
d(w′A−1w),+∞[ if w′A−1w < 0

= R \ {w′β̃} if w′A−1w = 0;

3. Otherwise, Cw′β = R.
5An event with probability one as soon as the distribution of AR(β0) is continuous. This condition

is of course satisfied in both the US and Australian data.
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Applying these results to each equation of the system (III.8)–(III.11) for both the US

and Australia, and adopting the notation β = (β1, β2, β3)
′ as the structural parameter

vector, yields confidence intervals for βj (j = 1, 2, 3) of the form depicted in Table 4.

These individual confidence intervals are constructed by manipulating the vector w for

each coefficient in each equation. For example, to obtain the confidence interval for β1

in each equation, we choose w = (1, 0, 0)′ such that w′β = β1. To determine those of β2

and β3, the vector w is changed accordingly.

Assessing first the US data, the concentration matrix A in the AS equation has one

negative eigenvalue with d ≥ 0 and w′A−1w > 0. Therefore, the confidence interval of

each coefficient is the entire real line R: these confidence intervals are infinitely large,

thus confirming that the AS equation is poorly identified. With such large confidence

intervals it is difficult to determine whether the coefficients are significantly different from

zero or not. In the MS equation, A has one negative eigenvalue and d < 0. For both β1

and β2, w
′A−1w < 0 so the resulting confidence regions of these coefficients are unions

of semi-infinite intervals. For β3, w
′A−1w > 0 so the confidence interval is the entire real

line R, which makes it difficult to claim statistical significance for any value. Whilst the

confidence intervals for β1 and β2 do exclude some values, the length (or diameter) of

values excluded is short. As such, the confidence intervals have infinite diameters, with

zero included, so we cannot confidently state that they are significantly different from

zero. For both the MD and IS equations, A is positive definite with d > 0, so the resulting

individual confidence intervals are bounded. In the MD equation, the confidence interval

for β1 excludes zero. As such, the coefficient on ∆yt in this equation is significantly

different from zero. The confidence intervals for β2 and β3 do contain zero, therefore it

cannot be stated that they are significantly different from zero at the 5% nominal level (at

least). For the IS equation, both the coefficients on ∆it and ∆mt −∆pt are significantly

different from zero, as their confidence intervals exclude zero. In contrast, the confidence

interval of the coefficient β1 on ∆yt contains zero, so this coefficient is not significantly

different from zero, despite the upper and lower bounds of its confidence interval being

very large.
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Evaluating the Australian data, the concentration matrix A in both the AS and MS

equations has one negative eigenvalue. In addition, d < 0 and w′A−1w > 0 except in

the AS equation for β2 where w′A−1w < 0. Therefore, the confidence intervals for all

coefficients of both equations are unions of semi-infinite intervals (except that of the AS

equation for β2 which is the entire real line) and contain zero. As such, the significance

of these coefficients is difficult to assert. For both the MD and IS equations, A is positive

definite and d > 0. Therefore, the resulting confidence intervals of all coefficients are

bounded, although they do contain zero. This means that we cannot conclude that these

coefficients are significantly different from zero, despite the fact that the upper and lower

bounds of their confidence intervals are substantially large.

There exists one instance where the 2SLS estimated coefficient in Table 2 does not lie

within the corresponding projection-based confidence interval, Cβ1 , in the MD equation

for the US (Table 4). This is not surprising as these projection-based confidence intervals

do not use 2SLS estimated coefficients, which is one of the main differences between the

weak IV robust procedures and the standard IV-based t and Wald-type method which

use such estimates. Clearly, these results corroborate the point that the SVAR is not

well-identified.

VI Robust confidence intervals for impulse

response functions

In this section, we propose a methodology to construct confidence sets with correct cover-

age rate for impulse response functions (IRFs). As we are interested in providing evidence

of the liquidity effect using the SVAR model (III.8)-(III.11), we shall mainly consider the

money demand (MD) equation to illustrate our methodology,6 i.e.

it −∆pt = −b031∆gapt − b032∆it − b034(∆mt −∆pt) + lags+ ε3t. (VI.1)

6The methodology described here also applies to the AS, MS, and IS equations but in order to limit
redundancies in our exposition, we omit the details surrounding these equations and focus on the MD
equation.

24



Table 4: Projection-based confidence intervals

US

Cβ1 Cβ2 Cβ3

AS R R R

MS ]−∞,−2026.2]∪ [−224.0,+∞[ ]−∞,−65.1] ∪ [−0.5,+∞[ R

MD [0.12, 1255.3] [-7.17, 9.88] [-1879.6, 2007.1]

IS [-65.77, 26.07] [-194.18, -0.01] [0.019, 193.50]

AUSTRALIA

Cβ1 Cβ2 Cβ3

AS ]−∞, 0.094] ∪ [2.544,+∞[ R ]−∞, 39.814] ∪ [54.666,+∞[

MS ]−∞, 338.50] ∪ [7740.5 +∞[ ]−∞,−241.52] ∪
[−0.2694,+∞[

]−∞,−9501.7] ∪ [−271.11,+∞[

MD [-13.42, 3339.8] [-44.91, 48.59] [-1141.1, 1212.6]

IS [-814.54, 802.92] [-2609.8, 0.024] [-0.002, 2607.3]
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Considering (VI.1 ), the impulse response of interest rate to an increase in the shock εkt

(k = 1, 2, 4) is defined by

∂(it+j −∆pt+j)/∂εkt, j = 0, 1, 2, . . . (VI.2)

Let y ≡ i − ∆p, X ≡ [∆gap,∆i,∆m − ∆p], Z1 ≡ lags, Z2 ≡ [ε̂1, ε̂2, û], and

β = (−b031,−b032,−b034)′. Following Doko Tchatoka and Dufour (2014), we can write the

structural equation (VI.1) and its reduced form forXt under the framework in (V.1)–(V.2)

as:

yt = X ′tβ + Z ′1tγ + V ′t g + ηt, (VI.3)

Xt = Π′1Z1t + Π′2Z2t + Vt, (VI.4)

where Vt is uncorrelated with ηt and g is a 3 × 1 constant vector. Of course, (VI.3)

holds from the decomposition ε3t = V ′t g + ηt, where Vt and ηt are uncorrelated (see

Doko Tchatoka and Dufour, 2014). The object of inferential interest in (VI.3)-(VI.4) is

the parameter vector g. In particular, we are concerned with inference on linear scalar

transformations of the vector g, i.e., the null hypothesis of the form

Hw′g0 : w′g = w′g0 (VI.5)

for some fixed (or predetermined) vector w ∈ R3, where g0 ∈ R3 is the unknown true

value of g. Without any loss of generality, we assume that the elements of Vt have unit

variance and are uncorrelated with each other7 for all t. Under (VI.3)-(VI.4) and if further

H0 : β = β0 in (V.3) holds, then the impact response of yt −X ′tβ0 to a unit impulse on

εkt (k = 1, 2, 4) is

∂(yt −X ′tβ0)/∂εkt = w′kg, k = 1, 2, 4, (VI.6)

7If Vt has covariance ΣV for all t, then we can write V ′t g = V ′t Σ
−1/2
V (Σ

1/2
V g) = Ṽ ′t g∗ where g∗ = Σ

1/2
V g,

so that Ṽ ′t = V ′t Σ
−1/2
V has identity covariance matrix for all t. Therefore, g absorbs the variance of Vt in

(VI.3) and assuming that Vt has identity covariance for all t should not significantly alter the results.
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where wk := ∂Vt/∂εkt ∈ R3 is the impact response of the reduced-from shock k to a unit

impulse on εkt. Since we focus on a short-run effect of unanticipated shocks, we assume

without any loss of generality that wk does not vary over time for all k. Clearly, given the

definition of yt and Xt in (VI.3)-(VI.4), (VI.6) measures the impact response of interest

rate (money demand) to a unit impulse on εkt (k = 1, 2, 4), once the contemporaneous

effect of the aggregate supply, the money supply, and the investment-savings have been

controlled for. For example, if k = 2, (VI.6) can be viewed as a measure of the liquidity

effect. It is clear that this interpretation given to (VI.6) holds because the null hypothesis

H0 : β = β0 is imposed, which suggests that one can assess Hw′g0 in (VI.5) with fewer

difficulties under H0 : β = β0. We can for example assess the presence of the liquidity

effect given β0 by looking at whether a confidence interval robust to weak instruments for

w′2g0 does not contain zero. Such confidence intervals can be constructed by using the

two-step methodology developed in Doko Tchatoka and Dufour (2014) and summarised

below.

From (VI.4), the reduced-form error Vt is Vt = Xt −Π′1Z1t −Π′2Z2t. Substituting this

into (VI.3) gives the extended orthogonalised equation (see Doko Tchatoka and Dufour,

2014, Eqs (2.14)–(2.15)):

yt = X ′tθ + Z ′1tπ
∗
1 + Z ′2tπ

∗
2 + ηt, (VI.7)

where θ = β+ g, π∗1 = γ−Π1g, and π∗2 = −Π2g. Doko Tchatoka and Dufour (2014) show

that the extended orthogonalised equation (VI.7) has the property that the parameter

θ = β+ g is always identified even when both β and g are not identifiable.8 Furthermore,

ηt is uncorrelated with all the regressors in (VI.7), meaning that the OLS method can be

used to estimate all the parameters of (VI.7). Letting θ̂ denote the OLS estimators of θ

in (VI.7), and assuming that wk 6= 0 is pre-determined for all k = 1, 2, 4, we can derive

closed forms of the weak IV robust confidence sets for w′kg0 under the joint hypothesis

β = β0 and g = g0 following Doko Tchatoka and Dufour (2014, Section 3.4). More

precisely, these confidence sets takes one of the following forms.

8See Doko Tchatoka and Dufour (2014, eq. (2.15)) for more details.
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1. If A = X ′HX is positive definite (H is given in (V.6)),

Cw′
kg0

(α1, α2) =
[
w′k(θ̂ − β̃)−DU (α1, α2) , w

′
k(θ̂ − β̃) +DU (α1, α2)

]
if d ≥ 0 ,

= ∅ if d < 0 ,

where DU(α1, α2) = D(α1) + D̄(α2), D̄(α2) = t(α2; T −G−K) σ̂(w′kθ̂),

σ̂(w′kθ̂) = s[w′k(X
′MX)−1wk]

1/2, s2 = y′M(Z̃)y/(T − G − K), Z̃ = [X
... Z1

... Z2],

D(α1) =
√
d (w′kA

−1wk), β̃ = −1
2
A−1b, d = 1

4
b′A−1b− c; b and c are given in (V.6);

t(α2; T−G−K) is the critical value of a Student distribution with T−G−K degrees

of freedom, K1 is the number of variables in Z1, K2 is the number of variables in

Z2, G is the number of variables in X, α1 and α2 are chosen such that α1 +α2 = α;

2. If A has exactly one negative eigenvalue, w′kA
−1wk < 0 and d < 0,

Cw′
kg0

(α1, α2) =
]
−∞ , w′k(θ̂ − β̃)−DL(α1, α2)

]
∪
[
w′k(θ̂ − β̃) +DL(α1, α2),+∞

[

where DL(α1, α2) = D(α1)− D̄(α2);

3. Otherwise, Cw′
kg0

(α1, α2) = R.

For the empirical implementation of the above confidence sets, we need to know wk :=

∂Vt/∂εkt first, as was the case for w in Section (ii). The challenge here is that wk

is not necessary a selection vector that picks up one component of g at the time, as

opposed to w which was a selection vector. As such, we suggest approximating wk from

the observed data. For this, we first regress the OLS reduced-form residual V̂t on the

2SLS residuals ε̂kt of Section III. We then approximate wk as the estimated coefficient

vector of this regression. We apply this method to both the US and Australian data to

construct Cw′
kg0

(α1, α2) for the AS, MS, MD and IS equations. Table 5 below gives the

95% confidence sets of these impact responses. We have also reported the results of the

90% confidence sets in Table 14 of the appendix, and they are qualitatively similar to

those shown here. As expected from our analysis in previous sections, two main findings

emerge.

First, for both the US and Australia, the weak IV robust confidence sets of the impact
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response of aggregated supply (AS) (respectively money supply (MS)) to a unit impulse

on money supply, money demand, and investment saving shocks (respectively aggregate

supply, money demand, investment saving shocks) are unbounded. For the US, these

confidence sets cover the entire real line. For Australia, the shocks on the AS equation

result in the entire real line but those on the MS equation yield unions of semi-infinite

intervals. This again illustrates the fact that both the AS and MS equations are weakly

identified. As all the IRFs confidence intervals contain zero, it is difficult to assert their

statistical significance for any shock.

Second, for both countries, the weak IV robust confidence intervals of the impact

response of interest rate (MD) (respectively investment saving (IS)) to a unit impulse on

aggregate supply, money supply, and investment saving shocks (respectively aggregate

supply, money supply, and money demand shocks) are bounded. However, they all include

zero, thus making it difficult to rule out the statistical insignificance of the IRFs of the

MD and IS equations for any shock. Note that the impact response of the money demand

(MD ) to a unit impulse on money supply shock is of particular importance because it

is a tangible measure of the liquidity effect. As seen, the corresponding weak IV robust

confidence intervals are very wide– [−4.3, 4.7] × 104 for the US and [−3.7, 1.9] × 104 for

Australia– but they also contain zero. Due to the fact these confidence intervals include

negative values, evidence of a liquidity effect is possible for both countries. However, as

they also include zero, the significance of this liquidity effect is empirically fragile.

29



Table 5: 95% Confidence intervals for IRFs

US

System
↓ shocks→

Aggregate supply Money supply Money demand Investment saving

AS . . . . . . R R R

MS R . . . . . . R R

MD [−1.7, 1.6]× 10−3 [−4.3, 4.7]× 104 . . . . . . [−3.6, 3.3]× 103

IS [−0.226, 219.55]× 10−10 [−945.4, 0.97]× 10−10 [−2.25, 1835.1]× 10−8 . . . . . .

AUSTRALIA

System
↓ shocks→

Aggregate supply Money supply Money demand Investment saving

AS . . . . . . R R R

MS ]−∞,−581] ∪ [−66.91,+∞[ . . . . . . ]−∞,−4933.9] ∪
[−584.64,+∞[

]−∞, 470.34] ∪ [42277,+∞[

MD [−0.98, 1.9]× 10−3 [−3.7, 1.9]× 104 . . . . . . [−2.62, 5.05]× 102

IS [−4.04, 7.35]× 10−8 [−4.05, 1.29]× 10−7 [−1.95, 3.38]× 10−5 . . . . . .
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VII Conclusion

Many empirical studies have evidenced the existence of the liquidity effect using structural

vector autoregressive models. The estimation of these models, however, relies heavily on

the standard instrumental variable method. The relevance of the IVs used to estimate

these models was questioned earlier by Pagan and Robertson (1998) who pointed out

possible identification issues.

In this paper, we use data from both the US and Australia to show that the four

variable Phillips curve-augmented IS-LM SVAR model by Gaĺı (1992) is not identified,

so the standard IV estimation used to provide evidence of the liquidity effect in this

model is biased. Using statistical procedures robust to weak instruments, along with

the projection method in Dufour and Taamouti (2005) and Doko Tchatoka and Dufour

(2014), we develop joint and individual confidence sets for the structural parameters and

impact response functions of the SVAR model. These confidence regions are in general

unbounded or large, and further, contain zero, thus suggesting that the evidence of the

liquidity effect found in previous studies is empirically fragile.
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A Appendix

Table 6: Descriptive statistics

US

Variable Obs Mean S.D. Min Q1 Mdn Q3 Max

gap 208 8.79 0.50 7.92 8.43 8.79 9.20 9.60

i 208 5.20 2.79 0.92 3.12 4.98 6.53 15.05

p 208 4.27 0.71 3.29 3.50 4.39 4.97 5.30

m 208 6.01 0.83 4.88 5.16 5.96 6.95 7.23

AUSTRALIA

Variable Obs Mean S.D. Min Q1 Mdn Q3 Max

gap 142 11.16 0.89 9.28 9.35 11.43 11.87 12.46

i 142 9.32 4.23 4.30 5.62 8.16 12.30 19.47

p 142 3.72 0.62 2.35 3.27 3.96 4.21 4.46

m 142 10.57 1.07 8.61 9.71 10.62 11.60 12.22
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Table 7: Optimal lag selection

US

Lag AIC HQIC SBIC

0 -5.45 -5.43 -5.39
1 -19.70 -19.57 -19.38
2 -19.99 -19.76 -19.41*
3 -20.16 -19.82* -19.32
4 -20.20* -19.75 -19.09

AUSTRALIA

Lag AIC HQIC SBIC

0 -0.826 -0.791 -0.740
1 -13.17 -12.99 -12.75
2 -13.59 -13.28* -12.82*
3 -13.72 -13.27 -12.61
4 -13.78* -13.19 -12.33
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Table 8: 2SLS estimation with 2 lags

US (1955Q1-2006Q4)

∆gapt ∆it it −∆pt ∆mt −∆pt

AS -1 0.075 -0.073 0.013
(0.162) (0.164) (0.178)

MS -0.004 -1 1.002 -0.280
(0.044) (0.001) (0.076)

MD 0.014 0.998 -1 -2.168
(0.155) (0.002) (0.934)

IS -2.100 -4.670 4.590 -1
(1.337) (2.538) (2.496)

AUSTRALIA (1971Q2-2006Q4)

∆gapt ∆it it −∆pt ∆mt −∆pt

AS -1 0.018 -0.020 -0.097
(0.091 (0.089 (0.068)

MS -0.009 -1 1.001 -0.086
(0.075) (0.002) (0.042)

MD -0.035 1.00 -1 0.114
(0.059) (0.001) (0.026)

IS 0.102 -1.058 1.055 -1
(0.179) (0.242) (0.242)

Robust standard errors in (·).

Table 9: Exogeneity tests (p-values)

US

Equation Wu-Hausman Durbin-Wu-Hausman

AS 0.264 0.226

MS 0.000 0.000

MD 0.000 0.000

IS 0.000 0.000

AUSTRALIA

Equation Wu-Hausman Durbin-Wu-Hausman

AS 0.063 0.041

MS 0.000 0.000

MD 0.000 0.000

IS 0.000 0.000
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Table 10: Weak IV diagnostics: Cragg-Donald F-stat

US AUSTRALIA

(1) AS 1.521 1.681

(2) MS 1.625 1.639

(3) MD 17.363 3.4e+12

(4) IS 18.705 1.5e+10

Table 11: Stock-Yogo critical values

10% maximal IV size 7.03

15% maximal IV size 4.58

20% maximal IV size 3.95

25% maximal IV size 3.63

Table 12: 2SLS estimation of B0 (short sample period)

US (1955Q1-1987Q3)

∆gapt ∆it it −∆pt ∆mt −∆pt

AS -1 1.252 -1.239 0.087
(1.182) (1.172) (0.369)

MS 0.238 -1 1.004 -0.487
(0.235) (0.002) (0.147)

MD 0.088 0.996 -1 -0.755
(0.078) (0.001) (0.240)

IS -0.912 -2.917 2.914 -1
(0.217) (0.507) (0.507)

Robust standard errors in (·).

Table 13: Cragg-Donald F-stat (short period: 1955Q1-1987Q3)

US

(1) AS 0.625
(2) MS 0.883
(3) MD 9.459
(4) IS 10.859

38



Table 14: 90% Confidence intervals for IRFs

US

System
↓ shocks→

Aggregate supply Money supply Money demand Investment saving

AS . . . . . . R R R

MS R . . . . . . R R

MD [−1.6, 1.5]× 10−3 [−3.9, 4.3]× 104 . . . . . . [−3.3, 3.04]× 103

IS [−0.228, 216.0]× 10−10 [−930.2, 0.82]× 10−10 [−1.97, 1805.4]× 10−8 . . . . . .

AUSTRALIA

System
↓ shocks→

Aggregate supply Money supply Money demand Investment saving

AS . . . . . . R R R

MS ]−∞,−1475.3]∪[−62.7,+∞[ . . . . . . ]−∞,−12537.3] ∪
[−547.9,+∞[

]−∞, 440.5] ∪ [10727,+∞[

MD [−0.85, 1.8]× 10−3 [−3.4, 1.7]× 104 . . . . . . [−2.27, 4.7]× 102

IS [−4.02, 7.34]× 10−8 [−4.05, 1.28]× 10−7 [−1.94, 3.38]× 10−5 . . . . . .
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