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ABSTRACT

The asymptotic distributions of the recursive out-of-sample forecast accuracy test statistics depend

on stochastic integrals of Brownian motion when the models under comparison are nested. This often

complicates their implementation in practice because the computation of their asymptotic critical

values is costly. Hansen and Timmermann (2015, Econometrica) propose a Wald approximation of

the commonly used recursive F-statistic and provide a simple characterization of the exact density

of its asymptotic distribution. However, this characterization holds only when the larger model has

one extra predictor or the forecast errors are homoscedastic. No such closed-form characterization

is readily available when the nesting involves more than one predictor and heteroskedasticity is

present. We first show both the recursive F-test and its Wald approximation have poor finite-

sample properties, especially when the forecast horizon is greater than one. We then propose an

hybrid bootstrap method consisting of a block moving bootstrap (which is nonparametric) and

a residual based bootstrap for both statistics, and establish its validity. Simulations show that

our hybrid bootstrap has good finite-sample performance, even in multi-step ahead forecasts with

heteroscedastic or autocorrelated errors, and more than one predictor. The bootstrap method is

illustrated on forecasting core inflation and GDP growth.
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consistency.
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1 Introduction

Out-of-sample tests of predictive accuracy have received considerable attention in the

literature.1 Such testing procedures often involve comparing the out-of-sample mean

squared forecast error (MSFE) of alternative models to select the one that minimizes

this criterion. The case of nested models is particularly interesting because the test-

statistics often used– such as the recursively generated F -statistic [McCracken (2007)

and Clark and McCracken (2001, 2005)]– have nonstandard asymptotic distributions

that depend on stochastic integrals of Brownian motion; see Clark and McCracken

(2012, 2014, 2015), and Hansen and Timmermann (2015). Many studies have devel-

oped methods for approximating the quantiles of the limiting distributions of these

statistics, mainly by using simulations methods; see Rossi and Inoue (2012) and

Hansen and Timmermann (2012). However, these simulation methods can be com-

putationally burdensome, especially in the multivariate setting, because it requires a

discretization of both the underlying (multivariate) Brownian motion and the support

of the nuisance parameters (such as the relative size of the initial estimation sample

versus the out-of-sample evaluation period).

Recently, Hansen and Timmermann (2015) show that the recursively generated

F -statistic of McCracken (2007) can be approximated by a Wald-type statistic whose

asymptotic distribution is a convolution of dependent χ2(1)-distributed random vari-

ables, thus simplifying the computation of test critical values. When the underly-

ing data generating process (DGP) is homoscedastic, their characterization yields

a closed-form expression of the exact density of the limiting distribution of the F -

statistic, even when the number of extra predictors in the larger model is greater

than one; see Hansen and Timmermann (2015, Theorem 5). However, no closed-form

characterization of the density of the limiting distribution of this statistic is available

in the multivariate setting (i.e., when there are more than one extra predictor in the

larger model) if the underlying DGP is heteroscedastic or serially correlated.

This paper contributes to this research area in two main ways. First, we show

through Monte Carlo simulations that even for moderate sample sizes, both the recur-

sively generated F -test of McCracken (2007) and its Wald approximation of Hansen

and Timmermann (2015) are often oversized, especially when the forecast errors ex-

hibit heteroscedasticity or serial correlation. The size distortions of both tests increase

with the forecast horizon. For example, in a simple framework where there is only one

extra predictor in the larger model, our simulations show that under serially corre-

lated forecast errors, the rejection frequencies under the null hypothesis of the F -test

(at the 5% nominal level) can jump from 10.6% when T = 50, 7.5% when T = 100,

1See Diebold and Mariano (1995), West (1996), White (2000), Stock and Watson (2003), Gia-
comini and White (2006), Corradi and Swanson (2007), McCracken (2007), Clark and McCracken
(2001, 2005, 2012, 2014, 2015), Rossi and Inoue (2012), Hansen and Timmermann (2012), among
others.

1



and 5.9% when T = 500 for a 1-period ahead forecast to 27.6% when T = 50, 17.4%

when T = 100, and 11.6% when T = 500 for a 4-period ahead forecast.

Second, we propose an hybrid bootstrap method consisting of a block moving

bootstrap (henceforth MBB, which is nonparametric) and a residual based bootstrap

(which is parametric) for both the recursively generated F -test and its equivalent

Wald statistic.2 Our bootstrap method builds on earlier work by Corradi and Swanson

(2007) but it differs from theirs in two important aspects. First, while Corradi and

Swanson (2007) (henceforth CS) bootstrap is purely nonparametric in the sense that

level data are re-sampled (pairs bootstrap), ours is semi-parametric and is based on

resampling the residuals of the restricted regression that excludes the extra predictors

(i.e., the null hypothesis is imposed in our bootstrap DGP). Re-sampling the residuals

is paramount to recovering an eventual pattern of serial correlation in the regression

errors, which is not always the case with the pairs bootstrap. Second, CS establish the

conditions on the block length under which their MBB is consistent but there is no

practical guidance on the (optimal) choice of this block length in their study. Their

Monte Carlo experiments [see Tables 2-3 in Corradi and Swanson (2007)] provide a

clear evidence on the importance of choosing the block length that fits the data better,

as the performance of the bootstrap CS test varies largely across alternative choices

of block lengths. In this paper, we suggest a data dependent approach to select the

block length. Specifically, we propose setting it equal to the optimal lag length of the

Newey and West’s (1987) HAC estimator used in the expressions of the statistics. As

the choice of the block length aims to capture the dependence structure of the data,

we believe matching it to the optimal lag length of the HAC estimator is reasonable.

Note, however, that we do not claim optimality of this choice, for example in the

sense of maximizing test power. Rather, we follow Andrews and Monahan (1992)

and the recommendations of Newey and West (1994) to select the kernel bandwidth

of the HAC estimator and then use it as the block length in our bootstrap DGP. This

choice satisfies the condition under which our bootstrap consistency is established,

thus guaranteeing that type I error is controlled for. From this perspective, our

bootstrap method can be viewed as complementary to Corradi and Swanson (2007).

We show that our proposed bootstrap is consistent under both the null hypothesis

of equal forecast accuracy and the alternative hypothesis, irrespective of the forecast

horizon and the underlying DGP exhibiting heteroskedasticity or serial correlation.

The proof of our bootstrap is innovative and different from the one in CS. Indeed,

due to nesting, the standard Gaussian approximation used in CS no longer holds, so

one has to resort to the functional central limit theorem; see Davidson (1994). We

present simulation evidence indicating that the bootstrap approximation performs

well in small samples, even with heteroscedastic or serially correlated errors. These

results are qualitatively the same across forecast horizons, confirming our theoretical

2See Kunsch (1989).
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findings. We illustrate our theoretical results with empirical applications which look

at forecasting core inflation and GDP growth.

Important contributions on residual MBB are Efron (1982, pp.35-36) and Fitzen-

berger (1998) but their bootstrap schemes assume the regressors to be strictly ex-

ogenous, therefore are kept fixed (not re-sampled) in the bootstrap algorithm. For

weakly dependent time series with lagged dependent variables, as is the case in most

applications of out-of-smple tests of equal forecast accuracy, this type of MBB will

not have desired size property. Other recent contributions on bootstrapping out-of-

sample tests of equal forecast accuracy include Clark and McCracken (2012, 2014,

2015). Their “wild”bootstrap algorithms also rely on the assumption that the regres-

sors are fixed (thus is often referred to as “fixed regressor wild bootstrap (FRWB)”).

Such FRWB often fails to control the size for multistep forecasts, for example, see

Clark and McCracken (2012, Table 2, DGP2) and Clark and McCracken (2015, Tables

1 & 3, DGP5).

Throughout this paper, convergence almost surely is symbolized by “a.s.”, “
p→”

stands for convergence in probability, while “
d→” means convergence in distribution.

The usual stochastic orders of magnitude are denoted by Op(·) and op(·). P denotes

the relevant probability measure and E is the expectation operator under P. The “∗”
on all these symbols and other variables (for example P∗) indicates the bootstrap

world. op∗(1)-P denotes a term converging to zero in P∗-probability, conditional on

the sample, and for all samples except a subset with probability measure approaching

zero, and Op∗(1)-P is for a term that is bounded in P∗-probability, conditional on the

sample, and for all samples except a subset with probability measure approaching

zero. Similarly, oa.s∗(1) and Oa.s∗(1) denote the terms that approach zero almost

surely and the terms that are almost surely bounded, according to the probability

law P∗, and conditional on the sample. The notation Iq stands for the identity matrix

of order q, and ‖U‖ denotes the usual Euclidian or Frobenius norm for a matrix U .

Finally, sup
ω∈Ω
|f(ω)| is the supremum norm on the space of bounded continuous real

functions, with topological space Ω.

The remainder of the paper is organised as follows. Section 2 presents the setup,

formulates the null hypothesis as well as the assumptions used, and summarizes briefly

the asymptotic properties of the tests studied. Section 3 presents our proposed boot-

strap method, proves the validity of the bootstrap, and presents Monte Carlo results

on the finite-sample performance of our proposed bootstrap compared to the FRWB

of Clark and McCracken (2012, 2014, 2015). Section 4 applies our bootstrap test to

forecasts of core inflation and real GDP growth in the US. Finally, Section 5 concludes.
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2 Framework

We first introduce the setup and the testing problem of interest in Sections 2.1 and

2.2. The asymptotic properties of the test statistics are studied in Section 2.3.

2.1 Setup

Let {Yt : 1 ≤ t ≤ T} be a stochastic process defined on
(
Ω,B,F ), where B is a σ-

algebra on Ω, F is the class of distributions under consideration, and Yt has support

on a compact subset of Rp for some positive integer p. Consider the partition Yt :=

(yt, X
′
2t)
′, where yt : 1 × 1 and X2t : k × 1 (k = p − 1) may contains lags of yt. By

convention, we assume that a vector (or a matrix) does not appear in the model if its

number of columns or rows is zero. For example, X2t does not appear in the above

partition of Yt if p = 1. Let s = max{q, τ} + 1, where q denotes the maximum lag

length of the variables in X2t and τ ≥ 1 is the forecasts horizon of interest.

Consider the predictive regression model (see Hansen and Timmermann, 2015)

yt = X ′2,t−τβ2 + ε2t

= X ′1,t−τβ21 + X̃ ′2,t−τβ22 + ε2t, t = s, . . . , T, (2.1)

where X2t = (X ′1,t, X̃
′
2,t)
′ is such that X1,t ∈ Rk1 , X̃2,t ∈ Rk2 (k = k1 + k2); β2 =

(β′21, β
′
22)′ ∈ Rk : β21 ∈ Rk1 and β22 ∈ Rk2 are unknown parameter vectors; and ε2t

is an error term. We are interested in testing whether X̃2t has predictive power in

forecasting yt at τ -periods ahead. This problem is often assessed by comparing the

mean squared error (MSE) of the forecast of yt+τ generated using the unrestricted

model (2.1) to the one resulting from the restricted regression:

yt = X ′1,t−τβ1 + ε1t, t = s, . . . , T. (2.2)

Formally, let β0
j = arg min

βj
EF [(yt −X ′j,t−τβj)2] denote the unknown true values of βj

(j = 1, 2) in (2.2) and (2.1) respectively, for some F ∈ F . The null hypothesis of

equal predictive performance under the MSE loss function takes the form:

H0 : EF [(yt −X ′2,t−τβ0
2)2 − (yt −X ′1,t−τβ0

1)2] = 0 (2.3)

for some F ∈ F , where β0
j (j = 1, 2) are defined above. The form of H0 in (2.3)

suggests building test statistics based on the MSE loss differential EF [(yt−X ′2,t−τβ2)2−
(yt −X ′1,t−τβ1)2]. This is usually done out-of-sample using a recursive estimation of

the model parameters; see e.g. Diebold and Mariano (1995); West (1996); Clark and

McCracken (2001). In the nested framework (2.1), the test statistics suggested in

the above studies have limiting distributions that depend on stochastic Brownian
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motions, which often makes the computation of their critical values cumbersome.

In this study, we focus particularly on the recursively generated F-test of Clark

and McCracken (2001), whose critical values are easier to compute in some cases

due to its equivalence to a Wald-type statistic (Hansen and Timmermann, 2015).

In particular, when the DGP is homoscedastic, Hansen and Timmermann (2015)

provide closed-form expressions of the exact density of the limiting distributions of

this F-statistic, even when the unrestricted model (2.1) contains more than one extra

predictor. However, no such closed-form characterizations are available when the

underlying DGP is heteroscedastic and (2.1) includes multiple extra predictors. This

setting is relevant in empirical work and providing a valid statistical procedure that

accounts for it is of great interest to applied researchers.

To introduce the recursively generated F-statistic, suppose that PT out-of-sample

predictions are available, where the first is based on a parameter vector estimated

using data from s to RT , the second on a parameter vector estimated using data from s

to RT +1, . . . , and the last is based on a parameter vector estimated using data from s

to RT +PT−1 ≡ T (i.e., the full sample). Let ŷt+τ |t(β̂2,t) := ŷt+τ |t = X ′2tβ̂2t denote the

τ -step ahead forecast generated from model (2.1) and ỹt+τ |t(β̂1,t) := ỹt+τ |t = X ′1,tβ̂1,t

be the one that results from model (2.2), where β̂j,t (j = 1, 2) are the recursive OLS

estimators of βj from (2.1)-(2.2), i.e.

β̂j,t = arg min
βj

1

t

t∑
n=s

(yn −X ′j,n−τβj)2, RT ≤ t ≤ T ; j = 1, 2. (2.4)

The recursively generated F -statistic for H0 (see Hansen and Timmermann, 2015)

takes the form

TT =
1

σ̂2
ε

T∑
t=RT

[
(yt −X ′2,t−τ β̂2,t)

2 − (yt −X ′1,t−τ β̂1,t)
2
]
, (2.5)

where σ̂2
ε is a consistent estimator of the variance of the unrestricted error in (2.1).3

Let H2 = p lim
T→∞

(
1
T

∑T
t=sX2,t−τX

′
2,t−τ

)
(assuming that the limit exists and also X2

includes a column vector of ones) be partitioned as:

H2 =

[
H1 H ′21

H21 H̃2

]
; H1 : k1 × k1, H21 : k2 × k1, H2 : k2 × k2,

and define Ȟ2 = H̃2−H21H
−1
1 H ′21, Zt−τ = X̃2,t−τ−H21H

−1
1 X1,t−τ . Also, let Γ̌n denote

the nth autocovariance (suppose for now that it exists) of the stochastic process

3The HAC estimator with the Bartlett kernel is utilized in the simulations and empirical applica-
tions, but any kernel in class H3 of Andrews (1991, Eq.(7.1)) could be employed. The block length
of the kernel bandwidth is selected following the recommendations of Andrews and Monahan (1992)
and Newey and West (1994).
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{Zt−τε2t}, i.e.

Γ̌n = p lim
T→∞

1

T

T∑
t=s

Zt−τε2tε
′
2,t−nZ

′
t−τ−n,

and define Ω̌ =
∑τ−1

n=−τ+1 Γ̌n. Let ZT,t−τ denote the residual from the multivariate

regression of X̃2,t−τ on X1,t−τ , i.e.

ZT,t−τ = X̃2,t−τ −
T∑
t=s

X̃2,t−τX
′
1,t−τ

(
T∑
t=s

X1,t−τX
′
1,t−τ

)−1

X1,t−τ .

The Wald statistic for the null hypothesis β22 = 0 in (2.1) is given by

ŜT = T β̂′
22·T

V̂ −1
T β̂

22·T , (2.6)

where β̂22·T =
(∑T

t=s ZT,t−τZ
′
T,t−τ

)−1∑T
t=s ZT,t−τyt and V̂T ≡ V̂T (β̂

22·T ) is a consistent

estimator of the variance of lim
T→∞

var
(√

T β̂
22·T

)
. If the errors are homoskedastic, we

have V̂T = σ̂2
ε

(∑T
t=s ZT,t−τZ

′
T,t−τ

)−1

and ŜT in (2.6) can be expressed as:

ŜT = S̃T /σ̂
2
ε(T ), where S̃T ≡ S̃(T ) =

T∑
t=s

ytZ
′
T,t−τ

( T∑
t=s

ZT,t−τZ
′
T,t−τ

)−1
T∑
t=s

ZT,t−τyt. (2.7)

We use the notation where σ̂2
ε(T ) in (2.7) to symbolize that it is a consistent esti-

mator of σ2
ε = var(εt) based on the full sample. Similarly, let ŜRT denote the Wald

statistic for β22 = 0 computed using the first RT observations in the sample. Hansen

and Timmermann (2015) show that TT in (2.5) is asymptotically equivalent to the

difference between two Wald-type statistics, i.e., TT = WT + op(1), where

WT = ŜT − ŜRT + σ−2
ε κ̌log(ρ), (2.8)

with κ̌ = tr[Ȟ−1
2 Ω̌] under H0, where Ȟ2 and Ω̌ are defined above. The expression

in (2.8) shows that WT is related to the homoscedastic Wald statistics for testing

β22 = 0, regardless of whether the underlying process is homoscedastic and regardless

of whether β22 = 0 or not. As such, the recursive F-statistic TT is not robust to

heteroscedasticity. However, Hansen and Timmermann (2015) highlight the impor-

tance of using (2.8) to correct for heteroscedasticity or serial correlation because the

HAC estimator is easy to implement with Wald-type statistics. However, even if such

correction was implemented, the asymptotic distribution of the resulting statistic will

still involve stochastic integrals of Brownian motions when (2.1) includes multiple ex-

tra predictors, thus making it cumbersome to compute critical values. This provides a

strong motivation for our bootstrap method that not only alleviates the shortcomings

of F-statistic TT , but also makes it easier to implement. Before moving on to the

bootstrap procedure, we first consider the following notations and assumptions.
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2.2 Notations and assumptions

Throughout the study, we use the following notations. For any j ∈ {1, 2}, we define

sjt(βj) = Xj,t−τ (yt −X ′j,t−τβj) ≡
(
sj,p(t)

)
1≤p≤kj

,

hjt = Xj,tX
′
j,t ≡

[
hj,pl(t)

]
1≤p,l≤kj

, Hjt =
1

t

t∑
n=s

hj,n−τ .

Define β2r = (β′1, 0
′)′ and consider the selection matrix J = [Ik1×k1

... 0k1×k2 ]
′ such that

J ′s2t(β2r) = s1t(β1) and J ′h2tJ = h1t. Also, let

s̃2t(β2) = σ−1
ε ÃH

−1/2

2 s2t(β2), (2.9)

Ã ∈ Rk2×k : Ã′Ã = H
1/2
2 (−JH−1

1 J ′ +H−1
2 )H

1/2
2 ,

where σ2
ε = var(ε2,t+τ ) and Hj = EF [hjt] for all j ∈ {1, 2}. We denote by B(r) =[

B1(r), . . . , Bk2(r)
]′ ∈ Rk2 , the standard Brownian motion defined on Dk2

[0,1], where

Dk2
[0,1] is the space of Cadlag mappings from [0, 1] to Rk2 . For any positive definite q×q

real matrix Σ, B(Σ) stands for a q-dimensional Brownian motion having covariance

matrix Σ; see e.g. (Davidson, 1994, Section 27.7). We now consider the following

assumptions on the model variables and parameters.

Assumption 1.

(i) Ujt =
[
sjt(βj)

′, vec
(
hjt −Hj

)′]′
is covariance stationary such that EF (Ujt) = 0

and Hj ≡ EF (hjt) is positive definite for all t and j;

(ii) Ujt is 3(2 + 1/ψ)-dominated4 uniformly in βj for some ψ > 0 and all t, j;

(iii) Ujt is L2+δ-NED5 on some sequence {Vjt} uniformly in βj of size −2(1 + ψ),

where {Vjt} is α-mixing of size −2(2+δ)(1+2ψ) for t, j and some δ > 0, ψ > 0.

Assumption 2.

There is a kernel function K(·) with bandwidth qT + 1 satisfying:

(i) K(·) : R → [−1, 1], K(0) = 0, K(x) = K(−x)∀ x ∈ R,
∫ +∞
−∞ K(x)2dx < ∞,∫ +∞

−∞ |K(x)|dx < ∞, K(·) is continuous at 0 and at all but a number of other

points in R, supx≥0 |K(x)| <∞;

4That is, there exists Ūjt such that |Uj,p(t)| < Ūjt and EF
[∣∣Ūjt∣∣3(2+1/ψ)]

<∞, for all t, j and p,

where Ujt :=
(
Uj,p(t)

)
1≤p≤k.

5Let {Vt} be a stochastic process and F t+n
t−n := σ(Vt−n, . . . , Vt+n) denote the σ-field generated by

Vt−n, . . . , Vt+n. We define a process {Wt} to be NED (Near Epoch Dependent) on a mixing process
{Vt} if EF [‖Wt‖2] <∞ and vn := supt ‖Wt−Et+nt−n(Wt)‖2 → 0 as n→∞, where ‖·‖p is the Lp norm
and Et+nt−n(·) ≡ EF [·|F t+n

t−n ]. {Wt} is NED on {Vt} of size −a if vn = O(n−a−δ) for some δ > 0. We say
that {Vt} is strong mixing with coefficients αn ≡ sup

m
sup

A∈Fm
−∞,B∈F∞

m+n

| P (A ∩B)− P (A)P (B) |
if αn → 0 as n→∞ suitably fast.
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(ii) as T →∞, qT →∞ and qT/
q
√
T → 0 for some q ∈ [0,∞) such that:

‖f (q)‖ ∈ [0,∞) where f (q) =
1

2π

∞∑
j=−∞

|j|qEF [X2,t−jX
′
2,t];

(iii)
∫ +∞

0
K̄(x)dx <∞ where K̄(x) = supy≥x |K(y)|.

Assumption 3.

(i) T = RT + PT − 1 and RT = bρT c for some ρ ∈ (0, 1);

(ii) PT/RT → π = (1− ρ)/ρ as T →∞.

Remarks.

1. The covariance stationary condition of both the score vector sjt(βj) and the

Hessian matrix hjt in Assumption 1-(i) is standard in the literature; see e.g. Clark

and McCracken (2012) among others. In addition, the existence of at least the first

six moments is required for both sjt(βj) and hjt (as per Assumption 1-(ii)). More-

over, the NED and strong α-mixing conditions in Assumption 1-(iii) ensures that the

process {yt, X2t} is ergodic in both the mean and the covariance, which is required

for the application of the central limit theorem in this type of framework. Unlike

previous studies6, Assumption 1 allows the the score vectors sjt(βj) and sj,t−h(βj)

to be correlated for h ≥ τ − 1. The idea to assume that the autocorrelations of the

score vector sjt(βj) are zeros for lag grater than τ − 1 is usually sustained by the

fact that the τ -period-ahead forecast errors exhibits an MA(τ − 1) serial correlation,

thus vanishing between observations that are distant at least τ periods. We relax this

assumption for the following reasons. As the model may include the lags of the de-

pendent variable as predictors, researchers may not choose the optimal lags to include

in the modelling process, but rather use fewer lagged predictors. This will create a

pattern of serial correlation in the errors εjt, and therefore in the score vectors sjt(βj).

2. The conditions (i) & (ii) of Assumption 2 ensures the consistency of the HAC

estimator with a rate of convergence established by Andrews (1991). Under these

conditions, the bandwidth parameter qT satisfies:

lim sup
T→∞

sup
0<ν<νu

(qT + 1)−1

T−1∑
n=1

∣∣∣K( n

ν(qT + 1)

)∣∣∣ <∞ (2.10)

for any 0 < νu < ∞– e.g., see Jansson (2002, Lemma 1). Note that condition (2.10)

holds for all kernels belonging to class K3 of Andrews (1991, Eq.(7.1)) and those

satisfying Assumptions 1 and 3 in Newey and West (1994).

3. Assumption 3 is used in most studies of out-of-sample tests of predictive

accuracy. It implies that 0 < π < ∞, i.e., RT and PT grow at the same rate as

6See e.g. Clark and McCracken (2001, 2012, 2014, 2015); McCracken (2007), and Hansen and
Timmermann (2015) among others.

8



T increases. It can be extended to π = 0, i.e., PT grows at a lower rate than RT .

Inference in this case is straightforward as it yields pivotal statistics (see McCracken,

2007, Theorem 3.2-(b)), meaning that our bootstrap method will yield a high-order

refinement in this case.

Under Assumptions 1–3, Hansen and Timmermann (2015) provides a character-

ization of the asymptotic distribution of TT under the null hypothesis β22 = 0 and

local alternatives of the form β22 = cT−1/2b for some constant scalar c and vector b.

More precisely, they show that:

(a) if β22 = 0, then

TT
d→

k2∑
l=1

λl

[
2

∫ 1

ρ

r−1Bl(r)dBl(r)−
∫ 1

ρ

r−2B2
l (r)d(r)

]
(2.11)

d≡
k2∑
l=1

λl
[
B2
l (1)− ρ−1B2

l (ρ) + log(ρ)
]

; (2.12)

(b) and if β22 = cT−1/2b for some c and b (b is such that b′Σ̌b = σ2
εκ), then

TT
d→

k2∑
l=1

λl

[
2

∫ 1

ρ

r−1Bl(r)dBl(r)−
∫ 1

ρ

r−2B2
l (r)d(r) + (1− ρ)c2

+ 2cal[Bp(1)−Bl(ρ)]
]

(2.13)

d≡
k2∑
l=1

λl
[
B2
l (1)− ρ−1B2

l (ρ) + log(ρ) + (1− ρ)c2 + 2cal[Bl(1)−Bl(ρ)]
]

;

where a = b′Ȟ2Ω̌
−1/2
∞ Q′ ≡

(
al
)

1≤l≤k2
, Q is an orthogonal matrix such that Q′Q = Ik2

and Q′ΛQ = σ−2
ε Ω̌

1/2
∞ Ȟ−1

2 Ω̌
1/2
∞ , Λ = diag(λ1, . . . , λk2), and Ω̌∞ is the asymptotic

variance of the stochastic process {Zt−τε2t} where Zt−τ = X̃2,t−τ −H21H
−1
1 X1,t−τ .

Remarks. Several observations are of order.

1. The expression of the limiting distribution of TT in (2.11) is well known in

the literature; see e.g. McCracken (2007). Hansen and Timmermann (2015) show

that this integral of stochastic Brownian motions can be expressed as a convolution

of dependent χ2(1) variables, as shown in (2.12).

2. Hansen and Timmermann (2015) show that the limiting distribution of each of

the Wald statistics ŜT and ŜRT in (2.8) is a convolution of dependent χ2(1) variables,

where λl (l = 1, . . . k2) are the eigenvalues of the matrix σ−2
ε Ȟ−1

2 Ω̌∞. Due to the

equivalence between TT and WT , this translates to the limiting distribution of TT

being a convolution of dependent χ2(1) variables, as shown in (2.12). As such, the

eigenvalues λl (l = 1, . . . k2) can be viewed a measures of heteroscedasticity in the

model. Under homoscedasticity, λl = 1 for all l and (2.11) reduces to the earlier result

9



in McCracken (2007). But under heteroscedasticity, λl 6= 1 for some l = 1, . . . , k2 and

(2.12) illustrates clearly that TT (thus WT ) is not robust to heteroscedasticity.

3. When B(r) is a univariate standard Brownian motion (i.e., when (2.1) con-

tains only one extra predictor), the limiting distribution in (2.12) is identical to that

of
√

1− ρ(Z2
1 − Z2

2) + log(ρ), where Zj
i.i.d.∼ N(0, 1), j = 1, 2 (Hansen and Timmer-

mann, 2015, Theorem 4), and can thus be simulated easily given ρ. This case is very

restrictive as it implies that X̃2 in (2.1) contains only one regressor (i.e. k2 = 1).

4. When B(r) is a multivariate standard Brownian motion (i.e., when X̃2 contains

more than one regressor) and the DGP is homoscedastic (i.e., λ1 = . . . = λk2 = 1), a

closed-form expression of the pdf of the exact density of the asymptotic limit variable

in (2.12) is provided in Hansen and Timmermann (2015, Theorem 5). This density

can be used to simulate the asymptotic critical values of TT under H0. However,

assuming homoscedasticity is restrictive in most times series applications. To the

best of our knowledge, we are not aware of a closed-form characterization of the pdf

of the limit variable in (2.12) under heteroscedasticity or serial correlation in the

multivariate nested setting (i.e., k2 > 1). Moreover, the equivalence between TT

and WT is asymptotic in nature, so the finite-sample behavior of both statistics may

differ, i.e. even in cases where the critical values of the limit variable in (2.12) can be

simulated, the resulting test may still yield size distortions in small samples.

2.3 Finite-sample properties of the tests

We investigate the finite-sample performance (size) of TT and WT through Monte

Carlo simulations. For this, we use the framework of Section 2 where X̃2 in (2.1)

contains only one regressor (i.e., k2 = 1). The reason we use k2 = 1 is that it is the

only case where the asymptotic critical values can be simulated easily upon allowing

for homoscedasticity, as discussed in Remark 3.

Specifically, the DGP is described by the following bi-variate vector autoregression

(VAR) (similar to Hansen and Timmermann, 2015):

yt = 0.3yt−τ + β22xt−τ + uyt, (2.14)

xt = 0.5xt−τ + uxt, (2.15)

where uyt, uxt are the error terms and τ is the forecast horizon. We run the experi-

ments with τ ∈ {1, 4} but the results are qualitatively the same for superior horizons.

In all experiments, the null forecast model is no-influence of xt−τ in (2.14), and the

alternative (unrestricted) forecast model takes the form of (2.14)-(2.15) with β22 6= 0,

therefore the testing problem of interest can be framed as:

H0 : β22 = 0 vs. H1 : β22 6= 0. (2.16)
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We cover four DGPs for the error vector (uyt, uxt)
′, some of which are important to

account for the presence of heteroscedasticity or autocorrelation.

DGP 1 (Homoscedasticity): (uyt, uxt)
′ i.i.d.∼ N(0, I2);

DGP 2 (Heteroscedasticity alone): ujt∼N(0, hjt) for j ∈ {x, y}, where hjt = α0 +

α1ujt−1 + α2hjt−1 and α1 = 0.1, α2 = 0.8;

DGP 3 (Autocorrelation only): ujt = 0.5uj,t−1 + εjt for j ∈ {x, y}, where (εyt, εxt)
′ i.i.d.∼

N(0, I2) when τ = 1; while ujt = 0.50uj,t−1+εjt+0.95εjt−1+0.90εjt−2+0.80εjt−3,

where (εyt, εxt)
′ i.i.d.∼ N(0, I2) when τ = 4;7

DGP 4 (Heteroscedasticity & Autocorrelation): DGP 2 + DGP 3.

The simulations are run withN = 10, 000 pseudo samples of size T ∈ {50, 100, 200, 500} ,
and the nominal level α is set at 5%.8 We consider the following sample split points

for π
(

= (1−ρ)
ρ

)
: {0.2, 0.8, 1.4, 2.0} . For example, when π = 0.2 we have ρ = 5

6
, i.e.,⌊

5T
6

⌋
observations are used in the initial estimation. This allows us to compare our

results with previous studies (see e.g., Clark and McCracken, 2001, 2005, 2001, 2005;

McCracken, 2007).

Table 1 shows the rejection frequencies of the tests with TT and WT using the

simulated asymptotic critical values, for both 1-step-ahead (τ = 1) and 4-step-ahead

(τ = 4) forecasts. The first column of the tables presents the fraction π of the sample

used in the initial estimation period. The other columns present, for each DGP, the

rejections frequencies under H0 of the tests at the nominal 5% level.

Considering first the case of 1-period-ahead forecasts, we see that both tests are

oversized when the standard critical values are used and the sample size is small. In

particular, when T = 50, the size distortions under DGP 3 (autocorrelation alone) and

DGP 4 (heteroscedasticity and autocorrelation) are large. For example, the maximal

rejection frequencies under DGP 4 for the F -test can be as high as twice the nominal

level (i.e., 10.3%), while that of the Wald test is even worse (13.7%). More precisely,

the rejection frequencies of the recursive F -test in DGP 4 range from 7.5% to 10.3%

and that of the Wald test range from 12.1% to 13.7%. Similar results are observed

in DGP 3 (autocorrelation alone). When T = 100, size distortions persist for both

tests in DGP 3 and DGP 4. However, the tests show better size when τ = 1 and

T ∈ {200, 500}.
Next, considering the case of 4-period-ahead forecasts, we see that both tests over-

reject the null hypothesis substantially, and the size distortions persist in DGP 3 and

DGP 4 even when T = 500. In particular, the rejection frequency of TT can be as

7Note that in addition to the AR(1) property, the forecast errors also exhibit MA(τ − 1) when
τ = 4, as expected from the theory. The form of the MA(τ − 1) is identical to the one in Clark and
McCracken (2012).

8We also run the experiments with α ∈ {1%, 10%} and the main findings remain qualitatively
unchanged. These results are not included in order to shorten the exposition.
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large as 27.6% when T = 50, 17.6% when T = 100, 13.9% when T = 200, and 12.1%

when T = 500. Similar results are observed for WT as well but its rejection frequencies

under DGP 3 and DGP 4 are slightly less than that of TT .

Table 1: Size of TT and WT with asymptotic critical values, α = 5%

T = 50
h = 1 h = 4

DGP 1 DGP 2 DGP 3 DGP 4 DGP 1 DGP 2 DGP 3 DGP 4
π TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald
0.2 7.9 8.6 7.1 7.9 10.6 12.0 10.3 12.7 10.8 12.1 10.5 11.7 21.5 21.0 21.8 21.1
0.8 8.0 8.7 7.4 8.8 9.7 13.2 10.0 13.7 10.0 12.0 9.4 11.6 25.2 19.6 25.5 19.8
1.4 6.8 8.8 6.7 8.0 8.7 12.1 8.9 12.1 8.7 11.0 9.0 11.5 25.3 17.0 26.0 17.4
2.0 7.0 8.6 6.5 8.5 7.9 11.5 7.5 12.2 8.5 10.4 7.5 10.4 27.6 15.6 27.1 15.2

T = 100
h = 1 h = 4

DGP 1 DGP 2 DGP 3 DGP 4 DGP1 DGP 2 DGP 3 DGP 4
π TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald
0.2 6.0 6.4 5.9 6.1 7.5 8.5 7.3 8.3 7.5 7.9 7.2 7.8 14.6 13.5 14.7 13.4
0.8 6.0 6.2 6.7 6.5 7.2 8.3 8.0 9.0 7.1 7.6 7.0 7.8 16.6 13.7 16.5 13.2
1.4 6.0 5.9 6.2 6.2 7.0 8.1 6.8 8.0 7.0 7.3 6.9 7.7 17.3 12.5 17.1 12.3
2.0 6.2 5.9 6.2 6.0 6.5 7.8 6.5 7.9 6.3 6.9 6.4 7.3 17.4 11.6 17.6 11.8

T = 200
h = 1 h = 4

DGP 1 DGP 2 DGP 3 DGP 4 DGP 1 DGP 2 DGP 3 DGP 4
π TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald
0.2 5.8 5.9 5.3 5.6 6.0 6.6 5.9 6.4 6.4 6.8 6.3 6.9 10.2 9.4 10.5 9.9
0.8 5.6 5.4 5.5 5.5 6.0 6.5 6.0 6.7 5.9 6.3 6.0 6.4 12.2 9.6 12.1 9.6
1.4 5.6 5.7 5.6 5.6 6.2 7.0 6.1 7.2 6.6 7.1 5.3 5.9 13.9 9.8 13.1 9.5
2.0 5.5 5.5 5.4 5.1 6.1 7.2 5.7 6.6 5.8 6.5 6.1 7.0 13.8 9.1 13.9 9.5

T = 500
h = 1 h = 4

DGP 1 DGP 2 DGP 3 DGP 4 DGP 1 DGP 2 DGP 3 DGP 4
π TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald
0.2 5.7 5.8 5.1 5.3 5.9 6.1 5.2 5.5 5.6 5.8 5.9 6.1 8.7 7.5 7.8 7.0
0.8 5.1 5.0 4.9 5.1 5.5 5.6 5.2 5.6 5.2 5.5 5.4 5.7 9.5 7.1 9.5 7.1
1.4 5.2 5.1 4.9 5.0 5.4 6.0 5.6 6.1 5.3 5.5 5.4 5.9 10.7 7.1 11.0 7.5
2.0 5.3 5.2 5.1 5.0 5.2 5.7 5.3 5.9 5.4 5.9 5.2 5.6 11.6 7.1 12.1 7.8
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3 Bootstrap tests

In this section, we propose a bootstrap procedure that alleviates some shortcomings

of the previous literature9, in addition to also providing finite-sample improvements of

the F and Wald tests of equal forecast accuracy. In case of multistep-ahead forecasts

(i.e. when τ > 1), previous bootstrap methods often fail to control the size even for a

well specified homoscedastic model due to the resulting MA(τ − 1) serial correlation

structure. Our bootstrap method builds on earlier work by Corradi and Swanson

(2007) and performs well for both TT and WT irrespective of the forecast horizon τ.

3.1 Bootstrap DGP

Let ε̂1,t denote the residuals from the OLS of (2.2), and define {Wt = (X†2,t, ε̂1,t) :

t = s, . . . , T} where X†2,t contains the variables in X2,t other than the lags of the

dependent variables yt. Let `T ∈ N be a block length (1 ≤ `T ≤ T − s), Bt,`T =

{Wt,Wt+1, . . . ,Wt+`T−1} be the block of `T consecutive observations starting at Wt

for t = s, . . . , T. Assume that T−s = bT `T so that the moving block bootstrap (MBB)

procedure consists of drawing bT = (T − s)/`T blocks, {B∗1,`T , B
∗
2,`T

, . . . , B∗bT ,`T }, ran-

domly with replacement from the set of overlapping blocks {Bs,`T , . . . , BT−`T+1,`T }.
The first `T observations in the pseudo-time series are the sequence of `T values

in B∗s,`T , the next `T observations in the pseudo-time series are the `T values in

B∗s+1,`T
, and so on, i.e., W ∗ ≡ (W ∗′

s ,W
∗′
s+1, . . . ,W

∗′
T )′ = (B∗

′

1,`T
, B∗

′

2,`T
, . . . , B∗

′

b,`T
)′,

where W ∗′
t := [X†

∗′

2,t , ε
∗
1,t] for all t = s, . . . T. Let I1, . . . , Ib be i.i.d. random vari-

ables distributed uniformly on {s − 1, s, . . . , T − `T}, the resulting bootstrap sam-

ple can be defined as {W ∗
t := Wτt , t = s, . . . , T} where τt is a random array, i.e.,

{τt} := {I1 + 1, . . . , I1 + `T , . . . , Ib + 1, . . . , Ib + `T}. To construct the bootstrap de-

pendent variable y∗t , we proceed as follows.

1. If X2,t does not contain any lag of yt, then set X†
∗′

2,t := X∗
′

2,t = [X∗
′

1,t, X̃
∗′
2,t] and

generate y∗t as:

y∗t = X∗
′

1,t−τ β̂1 + ε∗1,t, t = s, s+ 1, . . . , T. (3.1)

2. If X2,t contains lags of yt, proceed as follows. First, set y∗t = yt for all t =

1, . . . , s− 1 (initial values) and form y∗t−τ for t = s, . . . , τ + s− 1,10 and use the

bootstrap draws in X†
∗′

2,t to form X∗
′

1,t. Then, compute y∗t for t = s+ τ, . . . , T as:

y∗t = X∗
′

1,t−τ β̂1,t + ε∗1,t, t = s+ τ, . . . , T. (3.2)

9For example, our bootstrap method applies even when the errors in the DGP are heteroscedastic
or serially correlated, and the unrestricted model contains more that one predictors.

10Note that by definition, s = max{q, τ}+ 1, with q being the maximum lag length of yt included
in X2,t.
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Remarks.

1. The above bootstrap scheme is an hybrid of moving block bootstrap (which

is nonparametric) and residual based bootstrap. As such, it differs from previous

bootstrap procedures of tests of equal forecast accuracy in a number of ways. In

particular, it differs from Corradi and Swanson (2007) in three important aspects.

First, while Corradi and Swanson (2007)’s bootstrap is non-parametric in the

sense that level data are re-sample (pairs bootstrap) in their DGP, ours is based on

resampling the residuals from the restricted regression where the null hypothesis H0

is imposed. Clearly, in addition to the parametric nature of the model, our boot-

strap resampling scheme also exploits the null hypothesis of equal forecast accuracy.

Resampling the residuals help recover the serial correlation pattern of the regression

errors. For example, the Monte Carlo experiment in Corradi and Swanson (2007)

illustrates that the pairs bootstrap does not always mimic well the serial correlation

pattern in regression errors, as well as the persistence of the data, thus leading to

valid but conservative bootstrap tests. Looking at Corradi and Swanson (2007, Tables

2-3)], we see that with moderate autocorrelation of the errors in their DGP (a3 = 0.3)

and mild persistence in the data (a2 = 0.6), the size2 results indicate a conservative

moving block bootstrap procedure at the 10% nominal level for 1-period-ahead fore-

casts. The size property of this moving block bootstrap worsens as the persistence in

the data increases– e.g., see Corradi and Swanson (2007, Tables 2-3, Panel: C).

Second, as our bootstrap DGP imposes the null hypothesis, the resulting boot-

strap (bias-corrected) estimators and test statistics will not converge to the asymp-

totic distributions of the sample counterparts under the alternative hypothesis (i.e.,

when β22 6= 0). However, we will show that the bias-corrected estimators and the

resulting F-type and Wald-type bootstrap statistics will mimic well the asymptotic

distributions of the sample counterparts under the null hypothesis. As such, using

our proposed bootstrap critical values yields consistent tests (see Theorem 3.3).

Third, Corradi and Swanson (2007) establish the conditions on the block length

`T under which the MBB is consistent. We establish similar conditions but also sug-

gest a data dependent method to select the bootstrap block length. As the choice

of the block length should capture the structure of dependence in the data, we be-

lieve equalizing it to the optimal lag length of the HAC estimator of the variance of

the errors is a reasonable choice. We are not aware of any study on bootstrapping

out-of-sample tests of predictive accuracy that addresses formally the problem of au-

tocorrelation and the selection choice of the block length in a data-dependent way.

For example, Corradi and Swanson (2007, Tables 2-3) provide clear evidence that the

choice of block length influences the performance of the bootstrap CS test. From that

perspective, our bootstrap method can be viewed as an important contribution that

extends Corradi and Swanson (2007).

2. An important contribution on residual MBB is Efron (1982, pp.35-36), but its

bootstrap scheme considers the regressors as strictly exogenous, and hence are not re-
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sampled in the bootstrap algorithm. This type of MBB is not appropriate for weakly

dependent time series with lagged dependent variables. Fitzenberger (1998) proposes

a MBB where the regressors are re-sampled, but as in Corradi and Swanson (2007),

the choice of block length is not addressed. Other recent contributions on bootstrap-

ping out-of-sample tests of predictive accuracy include Clark and McCracken (2012,

2014, 2015). Their bootstrap algorithm relies on a variant of the wild bootstrap but

also assumes that the “regressors are fixed.”

Let β̂∗j,t be the recursive bootstrap estimator similar to β̂j,t in (2.4), i.e.

β̂∗j,t = arg min
βj

1

t

t∑
n=s

(y∗n −X∗
′

j,n−τβj)
2, RT ≤ t ≤ T ; j = 1, 2. (3.3)

It is important to note that in (3.3), while β̂∗1,t depends on β̂1,t, β̂
∗
2,t does not directly

depend on β̂2,t since the null hypothesis β22 = 0 is imposed in the bootstrap DGP.

Rather, it is straightforward to show that β̂∗2,t depends directly on the restricted

estimator β̃2,t = (β̂′1,t, 0
′)′. As such, letting θ̂1,t ≡ β̂1,t and θ̂2,t ≡ β̃2,t, we show in

Lemma A.3 in the appendix that EF ∗
[

1√
PT

∑T
t=RT

(β̂∗j,t − θ̂j,t)
]

= Op∗(1) pr-P for all

j = 1, 2, i.e., the limiting distribution of 1√
PT

∑T
t=RT

(β̂∗j,t − θ̂j,t) is not centered at

zero but is rather characterized by a location bias. This means that a bootstrap

test based on β̂∗j,t may not have a desirable size property and some adjustments are

required. Several studies, including Politis and Romano (1994) and Corradi and

Swanson (2007), have proposed methods to eliminate this location bias from β̂∗j,t. Due

to its simplicity, we adapt the approach by Corradi and Swanson (2007).

Define the adjusted recursive estimator

β̃∗j,t = arg min
βj

1

t

t∑
n=s

[
(y∗n −X∗

′
j,n−τβj)

2 + 2β′j

(
µT

T∑
n=s

sj,n(θ̂j,t)

)]
, RT ≤ t ≤ T, (3.4)

where µT = 1/(T − s+ 1) and sj,n(θ̂j,t) = Xj,n−τ (yn −X ′j,n−τ θ̂j,t) for all j = 1, 2. We

can solve (3.4) explicitly for β̃∗j,t to get

β̃∗j,t =

(
1

t

t∑
n=s

h∗j,n−τ

)−1(
1

t

t∑
n=s

[
X∗j,n−τy

∗
n − µT

T∑
n=s

sj,n(θ̂j,t)

])
, RT ≤ t ≤ T, (3.5)

where h∗j,n−τ = X∗j,n−τX
∗′
j,n−τ is the bootstrap analog of hj,n−τ = Xj,n−τX

′
j,n−τ . We

have the following result on the asymptotic behavior of β̃∗j,t.

Theorem 3.1. Suppose Assumptions 1 - 3 are satisfied and `T = o
(
T

1
4

)
. Under H0,

we have:

lim
T→∞

P
[
ω : sup

vj∈Rkj

∣∣∣P∗( 1√
PT

T∑
t=RT

(β̃∗j,t− θ̂j,t) ≤ vj
)
−P
( 1√

PT

T∑
t=RT

(θ̂j,t−β0
j ) ≤ vj

)∣∣∣ > ζ
]

= 0
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for any ζ > 0, where β0
2 ≡ β0

2r = (β0′
1 , 0

′)′.

Remarks.

1. Theorem 3.1 establishes the consistency under H0 of the limiting distribution

of 1√
PT

∑T
t=RT

(β̃∗j,t− θ̂j,t) to that of 1√
PT

∑T
t=RT

(θ̂j,t−β0
j ) for all j = 1, 2. Note that this

result also holds under the alternative hypothesis H1 : β22 6= 0 for j = 1. However,

it does not hold under H1 for j = 2 due to the fact that H0 is imposed under the

bootstrap DGP so that the asymptotic distributions of 1√
PT

∑T
t=RT

(θ̂2,t − β0
2) and

1√
PT

∑T
t=RT

(θ̂2,t−β2) = 1√
PT

∑T
t=RT

(θ̂2,t−β0
2)− (β2 − β0

2)︸ ︷︷ ︸
6=0 under H1

are different. By the Mann

and Wald’s (1943) theorem, a bootstrap statistic for H0 that is a continuous function

of 1√
PT

∑T
t=RT

(β̃∗j,t − θ̂j,t) should possess the size control property.

2. With the exception of imposing H0, the statement of Theorem 3.1 is similar to

Corradi and Swanson (2007, Theorem 1), but the proof is slightly different because the

asymptotic distribution of 1√
PT

∑T
t=RT

(θ̂j,t − β0
j ) is not a standard Gaussian random

variable, but is rather a mixture of Brownian motions, as shown in Lemma A.2-(b)

in the appendix.

Section 3.2 presents our bootstrap statistics and studies their asymptotic behavior.

3.2 Bootstrap statistics

Following Corradi and Swanson (2007), we suggest the following recursive bootstrap

F -statistic and its equivalent Wald-statistic:

T ∗
T =

1

σ̂∗2ε

T∑
t=RT

[
(y∗t −X∗

′

2,t−τ β̃
∗
2,t)

2 − (y∗t −X∗
′

1,t−τ β̃
∗
1,t)

2
]

(3.6)

W ∗
T = Ŝ∗T − Ŝ∗RT + σ̂∗

−2

ε κ̌∗log(ρ), (3.7)

where β̃∗j,t is given in (3.5), and σ̂∗
2

ε , Ŝ∗T , Ŝ∗RT , and κ̌∗ are the bootstrap sample

corresponding of σ̂2
ε , ŜT , ŜRT , and κ̌ respectively (which are defined in Section 2.1).

The following theorem establishes the bootstrap validity under H0.

Theorem 3.2. Suppose Assumptions 1 - 3 are satisfied and `T = o
(
T

1
4

)
. Under H0,

we have:

lim
T→∞

P
[
ω : sup

vj∈Rkj
| P∗(T ∗

T ≤ vj)− P(TT ≤ vj) |> ζ
]

= 0,

lim
T→∞

P
[
ω : sup

vj∈Rkj
| P∗(W ∗

T ≤ vj)− P(WT ≤ vj) |> η
]

= 0

for any ζ > 0 and η > 0.

Remarks.

1. The proof of Theorem 3.2 is given in the appendix. Since our hybrid bootstrap

DGP imposes the null hypothesis, Theorem 3.2 only proves the validity of bootstrap
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under H0. The results imply that the bootstrap critical values provide a good ap-

proximation of their asymptotic counterpart for both TT and WT . This enables us to

establish the consistency of the bootstrap under alternative hypothesis (see Theorem

3.3 below).

2. Theorem 3.2 holds regardless of whether the underlying data generating process

is homoscedastic/weakly dependent or not. As such, the proposed bootstrap is robust

heteroscedastic or weakly dependent data generating processes. This contrast with

the fixed regressors bootstrap of Clark and McCracken (2012, 2015) that requires the

regressors in (2.1) to be fixed and strictly exogenous. The theorem also holds for

any forecast horizon τ . In particular, it is valid in multi-step forecasts setting (i.e.,

τ > 1). Note that the fixed regressor bootstrap of the recursive F -test often fails

to control the size when τ > 1 due to the underlying MA(τ − 1) structure of the

resulting forecast errors– e.g., see Clark and McCracken (2012, Table 2, DGP2) and

Clark and McCracken (2015, Table 3, DGP5).

We shall now analyze the power property of the bootstrap test. To do this, let

c∗
T

(α) and c∗
W

(α) denote the (1 − α) quantiles under H0 of the bootstrap statistics

T ∗
T and W ∗

T respectively for some α ∈ (0, 1). Theorem 3.3 establishes the hybrid

bootstrap consistency under the alternative hypothesis H1 : β22 6= 0.

Theorem 3.3. Suppose Assumptions 1 - 3 are satisfied and `T = o
(
T

1
4

)
. If β22 6= 0

is fixed, then we have:

P
[
TT > c∗

T
(α)
]
→ 1, P

[
WT > c∗

W
(α)
]
→ 1 as T →∞.

Theorems 3.2&3.3 establish the consistency of the proposed bootstrap. Note that

it is possible to characterize the asymptotic power function of the bootstrap under

local alternatives of the form given in (2.13) with the resulting asymptotic distribu-

tions of the statistics. This exercise is, however, of second order importance because

these asymptotic distributions are unknown, and the motivation of the bootstrap at

the first place was to avoid simulating them since doing so can be costly especially

when k2 ≥ 2. We will now analyze the finite-sample performance of the proposed

bootstrap through a Monte Carlo experiment. Section 3.3 presents the results.

3.3 Finite-sample performance of bootstrap tests

In this section, we study the performance (size and power) of the proposed bootstrap

tests through Monte Carlo experiment. To do this, we use the simulation setting of

Section 2.3. To enable comparison with recent bootstrap methods, we present the

results of both our bootstrap F and Wald statistics along with the fixed regressor wild

bootstrap MSE-F statistic of Clark and McCracken (2012) and Clark and McCracken

(2015). Note that their fixed regressor bootstrap is different from ours because X†2,t
is kept fixed in their resampling process.
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3.3.1 Bootstrap test size

Table 2 shows the rejection frequencies for the proposed moving block bootstrap and

the fixed-regressor MSE-F bootstrap tests for 1-step-ahead (τ = 1) and 4-step-ahead

(τ = 4) forecasts for sample sizes T ∈ {50, 100, 200} at nominal 5% level.

As seen, the moving block bootstrap performs well for both TT and WT , while

the fixed-regressor MSE-F bootstrap tends to over-reject, especially in DGPs 3 and

4. Considering first DGP 1 and DGP 2, we see that the empirical size of our moving

block bootstrap is consistently around the 5% nominal level irrespective of the forecast

horizon, the sample size (including when T = 50), and the cut-off point π. Meanwhile,

the fixed-regressor MSE-F bootstrap shows some size distortions in both DGPs. Even

though fixed-regressor MSE-F bootstrap size distortions are relatively small in DGP

1 and DGP 2, they can be as high as 7.4% for τ = 1 and 7.6% for τ = 4 when T = 50.

Note that we should expect the (fixed-regressor) bootstrap to work in DGP 1 and

DGP 2 because the regressor X†2,t is exogenous by design. Now, looking at DGP 3 and

DGP 4, it is obvious that the size distortions of the fixed-regressor MSE-F bootstrap

are very large, especially for 4-step-ahead forecasts and sample sizes T = 50, 100.

For example, its maximal rejection frequencies in DGP 4 when τ = 4 are 20.9% for

T = 50 and 12.2% for T = 100. In most cases considered, our moving block bootstrap

with both TT and WT outperforms the fixed-regressor MSE-F bootstrap.

Comparing the relative size performance between moving block bootstrap with

TT and that with WT , both perform equally well even when T ∈ {50, 100}. This is

the case for all forecast horizons and cut-off points π considered, as opposed to their

behavior when asymptotic critical values were used (see Table 1).

So far we have shown that the asymptotic tests suffer from size distortions in finite

samples, particularly under heteroscedasticity or autocorrelation, while our proposed

bootstrap provides size correction even in multi-step ahead forecasts. These results

only consider the case with one extra predictor (i.e. k2 = 1) in the larger model,

which can be argued to be somewhat restrictive. In more general setting with k2 > 1,

no closed form characterization of the pdf of the density of the asymptotic limit

variable in (2.12) exists under heteroscedasticity. Even though asymptotic critical

values could be simulated, their use may still lead to size distortions in finite samples,

as evident from the case with k2 = 1. Nevertheless, bootstrapping tests can still be

performed with no additional complexity and so we now investigate the finite sample

performance (size) of TT and WT tests when there is more than one extra predictor

in the larger model. Precisely, we use the following DGP:

yt = 0.3yt−τ + β22x1,t−τ + β23x2,t−τ + uyt, (3.8)

xj,t = 0.5xj,t−τ + uxjt, j = 1, 2 (3.9)

where we cover the same four DGPs for the error vector (uyt, uxjt). In all cases, the null
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forecast model is no influence of xj,t−τ (j = 1, 2) in (3.8) as before and the alternative

(unrestricted) forecast model takes the form of (3.8)- (3.9) with β22, β23 6= 0.

Table 3 shows the rejection frequencies for the moving block and the fixed-regressor

MSE-F bootstrap tests. In line with the results with one extra predictor, our proposed

moving block bootstrap has good finite-sample performance and also outperforms the

fixed-regressor MSE-F bootstrap.

Table 2: Bootstrap rejection frequencies with sample sizes T = 50; 100; 200, α = 5%

T = 50

Moving Block
h = 1 h = 4

DGP 1 DGP 2 DGP 3 DGP 4 DGP1 DGP 2 DGP 3 DGP 4
π TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald
0.2 4.7 3.6 5.0 3.9 5.6 5.3 5.0 4.8 4.4 3.7 4.2 3.3 7.2 6.6 8.5 7.3
0.8 4.9 4.1 4.3 3.6 5.3 5.7 5.8 4.7 4.8 3.0 4.0 3.0 7.2 7.8 8.8 8.1
1.4 5.5 3.8 4.8 4.8 5.6 5.3 4.5 5.3 4.6 3.8 3.5 3.3 9.7 7.4 8.9 7.8
2.0 4.5 4.5 3.8 3.9 5.3 4.9 5.1 5.3 3.9 3.8 3.9 3.9 10.7 7.2 9.3 7.0

Fixed Regressor MSE-F
h = 1 h = 4

π DGP 1 DGP 2 DGP 3 DGP4 DGP 1 DGP 2 DGP 3 DGP 4

0.2 5.8 5.9 6.3 6.9 6.7 6.6 9.8 17.8
0.8 7.4 6.7 8.1 7.6 6.7 7.0 9.7 19.9
1.4 7.1 7.1 7.3 7.9 7.6 7.0 10.2 19.4
2.0 7.2 7.2 7.7 7.9 7.4 7.1 10.4 20.9

T = 100

Moving Block
h = 1 h = 4

DGP 1 DGP 2 DGP 3 DGP4 DGP 1 DGP 2 DGP 3 DGP 4
π TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald
0.2 4.9 4.9 4.2 4.7 5.1 5.2 5.3 5.3 4.4 4.8 4.7 4.2 6.6 6.3 5.1 5.3
0.8 6.1 5.4 5.2 5.2 4.9 5.2 5.3 5.5 4.7 4.4 4.9 4.5 5.3 6.3 5.7 5.8
1.4 5.0 5.1 6.0 5.0 4.9 5.5 5.6 5.1 5.0 5.0 5.4 4.3 5.6 6.2 5.5 6.3
2.0 5.9 5.0 5.3 5.0 4.7 4.8 5.2 5.2 5.2 4.7 4.5 4.6 6.0 6.3 5.9 5.9

Fixed Regressor MSE-F
h = 1 h = 4

π DGP 1 DGP 2 DGP 3 DGP4 DGP 1 DGP 2 DGP 3 DGP 4

0.2 5.8 5.7 6.4 6.3 6.3 6.8 8.1 12.2
0.8 6.8 6.1 6.6 7.0 7.0 6.9 7.9 10.9
1.4 6.2 5.9 6.4 6.8 6.8 5.6 8.0 11.2
2.0 6.5 6.5 6.7 6.5 6.2 5.9 7.8 11.8

T = 200

Moving Block
h = 1 h = 4

DGP 1 DGP 2 DGP 3 DGP 4 DGP 1 DGP 2 DGP 3 DGP 4
π TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald
0.2 4.4 4.9 4.0 4.5 5.0 4.9 5.1 5.1 5.3 5.1 4.4 4.4 4.4 5.2 6.1 5.8
0.8 5.2 4.9 4.1 4.7 4.8 5.6 5.1 5.7 3.8 5.0 4.2 4.7 4.4 5.7 5.3 5.5
1.4 5.5 4.9 5.4 5.0 5.3 5.9 5.4 4.9 4.8 5.3 5.5 5.0 4.6 4.9 6.5 5.2
2.0 5.4 5.1 5.5 4.8 4.8 5.1 5.4 5.0 4.2 4.7 4.4 5.0 6.1 4.7 4.9 5.4

Fixed Regressor MSE-F
h = 1 h = 4

π DGP 1 DGP 2 DGP 3 DGP4 DGP 1 DGP 2 DGP 3 DGP 4

0.2 5.8 5.7 6.1 6.0 5.6 5.4 7.6 8.9
0.8 5.9 5.8 6.1 6.1 6.4 5.6 6.7 9.3
1.4 6.1 6.0 6.1 6.2 5.6 6.0 6.8 8.5
2.0 5.7 5.7 5.8 6.1 5.8 5.8 6.4 8.5
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Table 3: Bootstrap rejection frequencies with two additional regressors in the larger model, α = 5%

T = 50

Moving Block
h = 1 h = 4

DGP 1 DGP 2 DGP 3 DGP 4 DGP1 DGP 2 DGP 3 DGP 4
π TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald
0.2 3.7 3.1 5.1 3.7 5.6 5.7 6.3 5.4 3.4 2.7 4.2 2.8 9.7 8.4 8.9 7.9
0.8 4.1 3.5 4.2 3.7 5.2 5.6 4.3 5.7 4.4 2.5 4.1 2.4 12.0 8.0 12.9 8.0
1.4 4.7 4.1 5.7 3.6 4.8 4.7 6.0 5.2 4.1 2.8 5.3 2.4 11.9 7.5 11.3 7.9
2.0 5.5 4.1 4.3 4.6 4.6 5.8 5.4 5.4 4.5 2.7 4.8 2.9 15.3 7.4 12.8 7.7

Fixed Regressor MSE-F
h = 1 h = 4

π DGP 1 DGP 2 DGP 3 DGP4 DGP 1 DGP 2 DGP 3 DGP 4

0.2 5.8 6.4 6.5 7.0 6.5 6.5 10.3 21.1
0.8 7.2 7.4 8.4 8.2 6.5 7.1 11.5 24.6
1.4 7.4 7.1 8.0 7.5 7.4 7.1 11.7 26.0
2.0 6.7 6.9 7.2 8.2 6.5 7.0 12.4 28.2

T = 100

Moving Block
h = 1 h = 4

DGP 1 DGP 2 DGP 3 DGP4 DGP 1 DGP 2 DGP 3 DGP 4
π TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald
0.2 5.2 4.6 4.2 4.4 5.3 5.1 6.0 5.9 4.7 4.2 4.8 4.3 5.9 5.8 5.0 5.7
0.8 4.5 4.6 4.6 4.6 5.5 5.4 5.3 5.2 3.8 4.7 4.9 5.1 6.1 6.7 7.0 6.5
1.4 4.5 4.3 5.3 4.5 5.0 5.2 5.2 5.2 5.0 4.7 5.2 4.4 6.5 6.5 8.1 5.7
2.0 5.3 4.8 4.5 5.1 5.3 5.5 4.5 5.5 5.2 4.7 5.7 4.7 7.8 6.1 6.2 6.3

Fixed Regressor MSE-F
h = 1 h = 4

π DGP 1 DGP 2 DGP 3 DGP4 DGP 1 DGP 2 DGP 3 DGP 4

0.2 6.2 5.8 6.6 6.4 6.5 6.1 8.9 13.7
0.8 6.3 6.3 7.1 6.7 6.1 6.0 7.5 13.5
1.4 6.6 6.1 6.9 6.7 6.9 6.3 8.1 13.5
2.0 5.9 6.0 6.2 6.2 6.5 6.7 8.2 14.0

T = 200

Moving Block
h = 1 h = 4

DGP 1 DGP 2 DGP 3 DGP 4 DGP 1 DGP 2 DGP 3 DGP 4
π TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald TT Wald
0.2 4.5 4.8 4.8 5.0 5.0 5.1 5.2 5.6 4.8 5.0 4.5 4.1 5.6 5.6 5.2 4.8
0.8 4.6 4.9 5.1 5.0 4.5 5.4 4.8 5.3 4.4 5.4 4.4 5.4 5.6 5.6 5.2 5.1
1.4 4.9 4.4 4.9 5.3 4.6 5.7 6.1 5.9 4.6 4.7 5.5 5.0 5.9 5.5 5.8 5.5
2.0 5.0 5.0 5.4 5.0 4.4 4.9 4.8 5.8 4.9 5.0 4.9 5.0 5.1 5.1 4.8 5.4

Fixed Regressor MSE-F
h = 1 h = 4

π DGP 1 DGP 2 DGP 3 DGP4 DGP 1 DGP 2 DGP 3 DGP 4

0.2 5.7 5.4 6.2 6.1 5.1 5.4 7.9 9.0
0.8 6.0 6.1 6.3 6.1 5.9 5.9 6.9 9.3
1.4 5.8 5.9 6.1 6.1 6.0 6.0 6.5 9.1
2.0 6.1 5.8 6.1 6.1 5.8 5.6 6.4 9.2
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3.3.2 Bootstrap test power

We now examine the power properties of the proposed moving block bootstrap TT

and WT tests. To shorten the exposition, the results are shown for T ∈ {50, 200} and

for the cut-off point π = 0.8.

Figures 1-2 show the empirical power plots for 1-period-ahead forecasts (top four

subfigures) and 4-period-ahead forecasts (bottom four subfigures). Each figure shows

the empirical power of the asymptotic and the moving block bootstrap tests for both

the recursive-F TT and the Wald WT test statistics.

Several results stand out from these figures. First, the bootstrap empirical power

is close to 1 even for moderate deviations from the null hypothesis when T = 200

(Figure 2), thus supporting the bootstrap consistency results in Theorem 3.2. As

expected, both bootstrap tests converge faster in DGPs 1-2 than in DGPs 3-4. Also,

the convergence seems faster in 1-step-ahead forecasts. Second, both tests have good

power when T = 50 irrespective of the forecast horizon (Figure 1), and this is the case

even for small deviations from the null hypothesis. Third, in all cases shown (DGPs,

sample sizes, and forecast horizons), the moving block bootstrap test with TT has

an edge in terms of power over that with WT . One of the important contributions

of Hansen and Timmermann’s (2015) Wald approximation is that it facilitates the

computation of the F-statistic critical values. Since our bootstrap method does not

require simulating the asymptotic critical values of TT from stochastic integrals of

Brownian motions, it is more appealing than the Wald approximation. In addition,

the critical values of the Wald statistic can only be simulated easily in specific cases (as

discussed above in Section 2.2), while our bootstrap method applies in more general

settings, including when the larger model has more than one extra predictor. Finally,

the bootstrap tests do not suffer from loss of power relative to the asymptotic tests

despite size correction. 11

11Asymptotic power is slightly higher than bootstrap power due to the asymptotic size distortions.

21



Figure 1: Power of the moving block bootstrap tests, T = 50
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Figure 2: Power of moving block bootstrap tests, T = 200
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4 Empirical applications

We illustrate our theoretical results through two applications. The first application

examines the predictive ability of Chicago Fed National Activity Index (CFNAI)

and other inflation measures for forecasting core PCE inflation (similar to Clark and

McCracken, 2015). The second is drawn from Stock and Watson (2003) and Clark

and McCracken (2012) and looks at forecasting quarterly U.S. GDP growth using a

range of potential indicators.

4.1 Forecasting core inflation

In this application, we compare 1-quarter and 4-quarter ahead forecasts of inflation

from two models. In the 1-quarter ahead forecasting exercise, the baseline (restricted)

model relates the change in inflation at t+1 to current and one lagged value of inflation

change, i.e.

yt+1 = b0 + b1yt + b2yt−1 + uy,t+1, (4.1)

where yt = ∆πt, πt = 400ln( Pt
Pt−1

) and Pt is the aggregate price index at t. The

alternative (unrestricted) model includes one lag of CFNAI, PCE food price inflation

less core inflation, and import price inflation less core inflation, i.e.

yt+1 = b0 + b1yt + b2yt−1 + x′tb3 + ux,t+1, (4.2)

where xt contains period t values of of CFNAI, PCE food price inflation less core infla-

tion, and import price inflation less core inflation. In the 4-quarter ahead forecasting

case, the baseline (restricted) model relates y
(4)
t+4 − y

(4)
t to a constant and y

(4)
t − y

(4)
t−4,

y
(4)
t = 100ln( Pt

Pt−4
). The alternative (unrestricted) model adds the period t values of

CFNAI, relative food price inflation, and relative import price inflation to the baseline

model.12 In both cases, the data sample spans 1983 : Q3 through 2008 : Q2 (T = 100)

and we use the cut-off point π = 1.4 for the initial estimation. Thus, out-of-sample

forecasts from 1994 : Q2 + τ − 1 through 2008 : Q2 (τ ∈ {1, 4}) are obtained and the

corresponding statistics computed. The bootstrap critical values are obtained with

9999 replications. The results are presented in Table 4. The first column of the table

shows the variables included in the alternative model, while the other columns show

for each forecast horizon the p-values of the proposed bootstrap test along with the

fixed regressor wild bootstrap(FRWB) MSE-F test of Clark and McCracken (2015).

The main findings from this table can be summarized as follows. First, including

CFNAI, PCE food price inflation and import price inflation do not improve forecast

accuracy of core inflation at 1-quarter ahead horizon, while it does for 4-quarter ahead

12To simplify the lag structure, the relative food and import price inflation variables are computed
as two-period averages of quarterly (relative) inflation rates; similar to Clark and McCracken (2015).
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forecasts. Second, the p-value of the FRWB is 0.000 for 4-quarter ahead forecasting,

while those of the MBB F- and Wald-statistics stand at 0.072 and 0.039 respectively.

This means that using the FRWB leads to rejecting the baseline model at 1% nominal

level, while the MBB T and W tests fail to reject the baseline model at 1% nominal

level. In particular, the MBB T test even fails to reject the baseline model at the

usual 5% nominal level.

Table 4: Test of equal accuracy for core inflation

One-quarter ahead: τ = 1

MBB Fixe regressor

Restricted variables TT WT MSE-F
CFNAI, food, imports 0.181 0.958 0.314

Four-quarter ahead: τ = 4

MBB Fixed regressor

Restricted variables TT WT MSE-F
CFNAI, food, imports 0.069 0.037 0.000

4.2 Forecasting real GDP growth

In this application, we examine the performance of 13 alternative models with respect

to the baseline model in forecasting real GDP growth. As in the previous application,

the comparison is done for τ -period ahead forecasts with τ ∈ {1, 4}. The baseline

model includes a constant and one lag of real GDP growth, where GDP growth

between t and t− τ is measured as yt = (400/τ)ln(GDPt/GDPt−τ ), i.e.

yt = β0 + β1yt−τ + uyt, (4.3)

while each of the 13 alternative models adds a potential leading indicator xt to (4.3),

i.e.

yt = β0 + β1yt−τ + β2xt−τ + uxt, (4.4)

where uxt is an error term. The set of leading indicators used are shown in Table 5. It

includes the change in consumption’s share in GDP (measured with nominal data),

weekly hours worked in manufacturing, building permits, purchasing manager in-

dexes for supplier delivery times and orders, new claims for unemployment insurance,

growth in real stock prices, change in 3-month Treasury bill rate, change in 1-year

Treasury bond yield, change in 10-year Treasury bond yield, 3-month to 10-month
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yield spread, and spread between Aaa and Baa corporate bond yields from Moody’s.

The data span the period 1961 : Q2 through 2009 : Q4 (T = 195) and out-of-sample

forecasts from 1981 : Q4 + τ − 1 through 2009 : Q4 (τ ∈ {1, 4}) are obtained and

the corresponding statistics computed. Figure 3 shows the plot of the percentage

change in real Gross Domestic Product from 1950 up to 2007. As seen in the figure,

the volatility of the time series has altered during the period, in particular from the

start of the Great Moderation, which may affect the performance of standard tests of

predictive ability, including the fixed regressors MSE-F bootstrap test of Clark and

McCracken (2015).

Figure 3: Quarterly real GDP growth

Note: The shaded areas of the chart show a common measure of data variability– plus and minus
one standard deviation around the sample period of the data.
Source: U.S. Bureau of Economic Analysis.

The results are reported in Table 5.13 The first column of the table shows the extra

predictor added to the baseline model (thus determining alternative (or unrestricted)

model), while the other columns show each test’s p-values from the pairwise forecast

comparisons. The top half of the table reports results for one-quarter ahead forecasts,

while the bottom half shows results for four-quarter ahead forecasts.

Considering first the one-quarter ahead forecasts, we see that tests based on our

MBB suggest that five models - those including change in consumption share, growth

in building permits, growth in stock prices, Baa-Aaa interest rate spread and PMI new

orders - improve the accuracy of forecasts relative to the benchmark AR(1) model.

139999 replications are used in computing the bootstrap critical values.
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In addition to the above five models, the FRWB test finds that the alternative model

that adds change in the 3-month Treasury bill rate to the baseline model also improves

slightly the one-quarter ahead forecast of GDP growth (p-value of 2.6%), while our

MBB fails to reject the baseline in that case at 10% nominal level (p-values of 19.3%

and 47.6% for the MBB F and Wald tests respectively).

Next, looking at the four-quarter ahead forecasts, our MBB suggests that two

models - those including growth in building permits and growth in stock prices -

forecast better than the benchmark AR(1) model at 5% nominal level.14 On the

other hand, the FRWB also adds the models with change in consumption share and

PMI orders to the above models in terms of their better forecast performance in

comparison to the baseline model. According to our MBB, the higher predictive

power of the change in consumption share and PMI orders seem to disappear in

the four-quarter ahead forecasts even at 10% nominal level. Meanwhile, the FRWB

fails to pick this up suggesting that the test over-rejects in some cases, which is in

line with the Monte Carlo evidence reported earlier. Finally, weekly hours worked

in manufacturing seems to exhibit a better predictive ability as the forecast horizon

increases, though not statistically significant at the 10% level.

14In case of growth in stock prices, test based on recursive F statistics fails to reject the baseline
at 10% nominal level, therefore providing mixed evidence regarding this variable.
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Table 5: Test of equal accuracy for GDP

One-quarter ahead: τ = 1

MBB Fixed regressor

Restricted variables TT WT MSE-F
∆ (C/Y) 0.000 0.000 0.000
∆ ln Permits 0.002 0.000 0.000
∆ ln S & P 500 0.002 0.000 0.000
Spread, Baa-Aaa 0.067 0.085 0.072
PMI Orders 0.083 0.005 0.000
Unemployment claims 0.183 0.379 0.217
∆ 3-month treasury 0.193 0.476 0.026
∆ one-year treasury 0.233 0.280 0.451
Hours 0.342 0.531 0.420
PMI deliveries 0.331 0.647 0.905
∆ 10-year treasury 0.425 0.375 0.530
Spread, 10y - 3m 0.999 0.995 0.995
Spread, 10y - 1y 1.000 1.000 0.997

Four-quarter ahead: τ = 4

MBB Fixed regressor

Restricted variables TT WT MSE-F
∆ (C/Y) 0.203 0.266 0.059
∆ ln Permits 0.000 0.000 0.000
∆ ln S & P 500 0.187 0.016 0.000
Spread, Baa-Aaa 0.375 0.617 0.841
PMI Orders 0.300 0.123 0.011
Unemployment claims 0.336 0.391 0.307
∆ 3-month treasury 0.506 0.557 0.997
∆ one-year treasury 0.656 0.558 0.906
Hours 0.157 0.142 0.189
PMI deliveries 0.737 0.189 0.999
∆ 10-year treasury 0.933 0.864 0.889
Spread, 10y - 3m 0.999 0.998 0.999
Spread, 10y - 1y 1.000 1.000 0.998
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5 Conclusion

In this paper we examine the finite-sample performance (size and power) of the re-

cursively generated F -test of out-of-sample predictive accuracy (McCracken, 2007)

and its equivalent Wald approximation (Hansen and Timmermann, 2015). We show

through Monte Carlo experiments that even for moderate sample sizes, both tests

can be oversized, especially when the forecast errors exhibit serial correlation and

the forecast horizon is greater than one. We thus propose a bootstrap method for

both statistics and establish its consistency, irrespective of the forecast horizon and

the underlying data generating process. Interestingly, our bootstrap method applies

even in cases where the larger model contains many extra predictors and the data

generating process exhibit heteroscedasticity or serial correlation, situations under

which the asymptotic critical values of the standard recursive F or Wald statistics are

difficult to simulate.

The proposed bootstrap is an hybrid of a block moving bootstrap (which is non-

parametric) and a residual based bootstrap (which is parametric). It is easy to imple-

ment, and we documented how to choose the block length in practice. In particular,

we suggest that practitioners choose the block length that mimics the optimal lag

length of the Newey and West’s (1987) HAC estimator. Monte Carlo simulations

show that the proposed bootstrap tests have an overall good finite-sample perfor-

mance. The method is also illustrated with applications on forecasting core inflation

and real GDP growth.
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A Appendix

In this appendix, we present the supplemental lemmas and the proofs of the main

results in the paper. In all this section, θ̂j,t, j = 1, 2 is defined as θ̂1,t ≡ β̂1,t and

θ̂2,t ≡ β̃2,t, where β̃2,t = (β̂′1,t, 0
′)′.

A.1 Supplemental lemmas

This section establish some key results used in the main proofs of the paper.

Lemma A.1. Suppose Assumptions 1-4 are satisfied. Then for any r ∈ [ρ, 1], we

have:

(a) 1√
T

∑t
n=s s̃2n =⇒ B(r);

(b) (T/t)√
T

∑t
n=s s̃2n =⇒ r−1B(r);

(c) (T/RT )√
T

∑t
n=s+t−RT s̃2t =⇒ ρ−1[B(r)−B(r − ρ)],

where s̃2t is defined in (2.10) and B(r) = [B1(r), . . . , Bk2(r)]
′ ∈ Rk2 is a vector of

standard Brownian motions defined on Dk2
[0,1].

Lemma A.2. Let H2 and J be given as in (2.10) and define Υ = σ−1
ε (H−1

2 −JH−1
1 J ′).

Suppose Assumptions 1-4 are satisfied. Then for any r ∈ [ρ, 1], we have:

(a) (T/t)√
T

∑t
n=s s2n =⇒ B

(
r−1Υ−1

)
;

(b) 1√
PT

∑T
t=RT

(β̂2,t − β0
2) =⇒ B

(
r−3(1 − ρ)H−1

2 Υ−1H−1
2

)
and 1√

PT

∑T
t=RT

(β̂1,t −
β0

1) =⇒ B
(
r−3(1− ρ)H−1

1 J ′Υ−1JH−1
1

)
,

where Υ−1 = σε(H
−1
2 − JH−1

1 J ′)−1 and for any k2 × k2 matrix Σ, B(Σ) is a k2-

dimensional Brownian motion having covariance Σ.

Lemma A.3. Suppose Assumptions 1-4 are satisfied, and let β̂∗j,t and θ̂j,t be define

as in (3.3) and below Section A. If further `T = o(T 1/2) as T →∞, then we have:

1√
PT

T∑
t=RT

(β̂∗j,t − θ̂j,t)|X = Op(1), j = 1, 2,

i.e., the limiting distribution of 1√
PT

∑T
t=RT

(β̂∗j,t − θ̂j,t) is not centered at zero, but is

rather characterized by a location bias.

Lemma A.4. Suppose Assumptions 1-4 are satisfied, and let β̂∗j,t and θ̂j,t be define

as in (3.3) and below Section A. If further `T = o
(
T

1
2
)

as T →∞, then we have:

1√
PT

T∑
t=RT

(β̃∗j,t − θ̂j,t)|X = op(1), j = 1, 2,
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i.e., 1√
PT

∑T
t=RT

(β̃∗j,t − θ̂j,t) is asymptotically unbiased.

Lemma A.5. Suppose Assumptions 1-4 are satisfied, and let θ̂j,t be define as below

Section A. If further `T = o
(
T

1
4
)

as T →∞, then we have:

1√
PT

T∑
t=RT

(
1

t

t∑
n=s

(
h∗j,n−τ − µT

T∑
n=s

hj,n−τ

)
(θ̂j,t − β0

j )

)
= op∗(1) pr-P ∀ j = 1, 2,

where β0
j is the true parameter value in (2.4) and µT = 1/(T − s+ 1).

Proof of Lemma A.1. The proof is a direct application of the Functional Central

Theorem result in Davidson (1994, corollary 29.19),15 therefore it is omitted.

Proof of Lemma A.2. First, observe that As s̃2n = σ−1
ε ÃH

−1/2
2 s2n from (2.10).

Therefore we have

s2n =
[
σ−1
ε H

−1/2
2 Ã′ÃH

−1/2
2

]−1
H
−1/2
2 Ã′s̃2n = Υ−1H

−1/2
2 Ã′s̃2n. (A.1)

(a) From (A.1), we have

(T/t)√
T

t∑
n=s

s2n =
(T/t)√
T

t∑
n=s

Υ−1H
−1/2
2 Ã′s̃2n = Υ−1H

−1/2
2 Ã′

(T/t)√
T

t∑
n=s

s̃2n

=⇒ r−1Υ−1H
−1/2
2 Ã′B(r) from Lemma A.1, (A.2)

and r−1Υ−1H
−1/2
2 Ã′B(r) is a linear transformation of a vector of standard Brownian mo-

tions, thus is also a Brownian motion. By observing that

var[r−1Υ−1H
−1/2
2 Ã′B(r)] = r−2Υ−1H

−1/2
2 Ã′(rIk2)ÃH

−1/2
2 Υ−1 ≡ r−1Υ−1,

it clear that r−1Υ−1H
−1/2
2 Ã′B(r) is distributed as B

(
r−1Υ−1

)
.

(b) First, note that θ̂j,t − β0
j =

(
1
t

∑t
n=s hj,n−τ

)−1 (1
t

∑t
n=s sj,n

)
= H−1

j
1
t

∑t
n=s sj,n +

15Also see McCracken (2007, Lemma A1).
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op(1). Hence we can approximate 1√
PT

∑T
t=RT

(θ̂j,t − β0
j ) as:

1√
PT

T∑
t=RT

(θ̂j,t − β0
j ) =

1√
PT

T∑
t=RT

1√
T

T√
T

(θ̂j,t − β0
j )

= H−1
j

1√
PT

T∑
t=RT

1√
T

(T/t)√
T

t∑
n=s

sj,n + op(P
1/2
T T−1/2)

=

√
π

1 + π
H−1
j

(T/t)√
T

t∑
n=s

sj,n + op(1)

=
√

1− ρH−1
j

(T/t)√
T

t∑
n=s

sj,n + op(1). (A.3)

For j = 2, the last term of the RHS of (A.3) is such that
√

1− ρH−1
2

(T/t)√
T

∑t
n=s s2,n +

op(1) =⇒
√

1− ρr−1H−1
2 Υ−1H

−1/2
2 Ã′B(r) by Lemma A.2-(a), which is distributed as

B
(
r−3(1 − ρ)H−1

2 Υ−1H−1
2

)
. The result for j = 1 follows easily from (A.3) once we

realise that s1,n = J ′s2,n by the definition of J in (2.10).

Proof of Lemma A.3. Let h∗j,n−τ = X∗j,n−τX
∗′
j,n−τ and s∗j,n(βj) = X∗j,n−τ (yn−X∗

′
j,n−τβj)

denote the bootstrap corresponding of hj,n−τ and sj,n(βj) in Assumptions 2-3. First,

from the F.O.C of (3.3), we have for all t = RT , . . . , T :

1

t

t∑
n=s

X∗j,n−τ (y
∗
n −X∗

′

j,n−τ β̂
∗
j,t) = 0 =

1

t

t∑
n=s

X∗j,n−τ [y
∗
n −X∗

′

j,n−τ (β̂
∗
j,t − θ̂j,t + θ̂j,t)]

⇔ 1

t

t∑
n=s

X∗j,n−τX
∗′
j,n−τ (β̂

∗
j,t − θ̂j,t) =

1

t

t∑
n=s

X∗j,n−τ (y
∗
n −X∗

′

j,n−τ θ̂j,t), (A.4)

so that we get

1√
PT

T∑
t=RT

(β̂∗j,t − θ̂j,t) =
1√
PT

T∑
t=RT

(
1

t

t∑
n=s

h∗j,n−τ

)−1(
1

t

t∑
n=s

s∗j,n(θ̂j,t)

)
, (A.5)

for j = 1, 2. As the bT blocks are drawn i.i.d. with probability 1/(T − s− `T + 1), we
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have

1

t

t∑
n=s

EF ∗ [s∗j,n(θ̂j,t)|X ] =
1

`T (T − `T + 1)

T−s−`T∑
n=s

`T∑
p=1

sj,In+p(θ̂j,t)

= µT

T∑
n=s

sj,n(θ̂j,t) +Op(`TT
−1), (A.6)

1

t

t∑
n=s

EF ∗ [h∗j,n−τ |X ] =
1

`T (T − s− `T + 1)

T−`T∑
n=s

`T∑
p=1

hj,In+p−τ

= µT

T∑
n=s

hj,In+p−τ +Op(`TT
−1), (A.7)

where µT = 1/(T − s+ 1) and the In + p’s are the uniform random variables defined

in the bootstrap DGP, and the last equality in each of the equations (A.6) and (A.7)

follows from the fact that the first and last `T observations have less likely to be

drawn– e.g., Fitzenberger (1998, Lemma 1) and Politis and Romano (1994, Eq.(4)).

As 1
T−s+1

∑T
n=s hj,In+p−τ = Hj + op(1) for j = 1, 2, under Assumption 2, it is clear

from (A.5) that

1√
PT

T∑
t=RT

(β̂∗j,t − θ̂j,t) = H−1
j

1√
PT

T∑
t=RT

(
1

t

t∑
n=s

s∗j,n(θ̂j,t)

)
+ op∗(1) pr-P (A.8)

⇒ EF ∗

 1√
PT

T∑
t=RT

(β̂∗j,t − θ̂j,t)|X

 = H−1
j

1√
PT

T∑
t=RT

1

t

t∑
n=s

EF ∗ [s∗j,n(θ̂j,t)|X ], (A.9)

where H−1
j = (EF [hj,n−τ ])

−1
. Now, we can write the first term of RHS of the last

equality in (A.6) [scaled by 1/T instead of µT ] as:

1

T

T∑
n=s

sj,n(θ̂j,t) =
1

T

T∑
n=s

Xj,n−τ [yn −X ′j,n−τ (θ̂j,t − θ̂j,t + θ̂j,t)]

=
1

T

T∑
n=s

sj,n(θ̂j,t)︸ ︷︷ ︸
=0 from the F.O.C

− 1

T

T∑
n=s

Xj,n−τX
′
j,n−τ (θ̂j,t − θ̂j,t)

=

(
1

T

T∑
n=s

hj,n−τ

)
︸ ︷︷ ︸

=Op(1)

(θ̂j,t − θ̂j,t)︸ ︷︷ ︸
=Op(T−1/2) by Lemma A.1

= Op(1)Op(T
−1/2) = Op(T

−1/2). (A.10)

Therefore, (A.10) entails that EF ∗
[

1√
PT

∑T
t=RT

(β̂∗j,t − θ̂j,t)|X
]

= Op(1) from (A.9)

provided that `T = o(T 1/2), as stated.
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Proof of Lemma A.4. First, the F.O.C of the minimization problem in (3.4) is

1

t

t∑
n=s

(
− 2X∗j,n−τ (y∗n −X∗

′
j,n−τ β̃

∗
j,t) + 2µT

T∑
n=s

sj,n(θ̂j,t)
)

= 0. (A.11)

By proceeding as in (A.4)–(A.5), (A.11) implies that

1√
PT

T∑
t=RT

(β̃∗j,t − θ̂j,t) =
1√
PT

T∑
t=RT

(
1

t

t∑
n=s

h∗j,n−τ

)−1(
1

t

t∑
n=s

[
s∗j,n(θ̂j,t)− µT

T∑
n=s

sj,n(θ̂j,t)
])

=
H−1
j√
PT

T∑
t=RT

(
1

t

t∑
n=s

[
s∗j,n(θ̂j,t)− µT

T∑
n=s

sj,n(θ̂j,t)
])

+ op∗(1) pr-P.(A.12)

However, given the sample X , we haveH−1
j

(
1
t

∑t
n=s

[
s∗j,n(θ̂j,t)− µT

∑T
n=s sj,n(θ̂j,t)

])
=

Op(`TT
−1/2) pr-P from (A.6)–(A.10) in the proof of Lemma A.3. Thus we get

1√
PT

T∑
t=RT

(β̃∗j,t − θ̂j,t)|X = Op(`TT
−1/2) ≡ op(1) if `T = o(T 1/2),

i.e., 1√
PT

∑T
t=RT

(β̃∗j,t − θ̂j,t) is asymptotically unbiased.

Proof of Lemma A.5. We have:

1√
PT

∑T
t=RT

(
1
t

∑t
n=s

(
h∗j,n−τ − 1

T−s+1

∑T
n=s hj,n−τ

)
(θ̂j,t − β0

j )
)

≤ sup
t≥RT

√
PT

∣∣∣1t ∑t
n=s

(
h∗j,n−τ − µT

∑T
n=s hj,n−τ

)
(θ̂j,t − β0

j )
∣∣∣

≤ sup
t≥RT

√
PT

t1+ν

∣∣∣∑t
n=s

(
h∗j,n−τ − µT

∑T
n=s hj,n−τ

)∣∣∣ sup
t≥RT

tν | θ̂j,t − β0
j | (A.13)

with 1/3 < ν < 1/2. To establish Lemma A.5, it suffices to check that

sup
t≥RT

√
PT

t1+ν

∣∣∣∣∣
t∑

n=s

(
h∗j,n−τ − µT

T∑
n=s

hj,n−τ

)∣∣∣∣∣ = op∗(1) pr-P

and sup
t≥RT

tν | θ̂j,t − β0
j |= op(1)

under the conditions of the lemma. First, for any ν < 1/2, sup
t≥RT

tν | θ̂j,t − β0
j |= op(1)

by West (1996, Lemma A3-(b)). Now, under Assumption 2, µT
∑T

n=s hj,n−τ is a

strong consistent estimator of Hj = EF [hj,n−τ ] by the Law of Iterative Logarithm

(LIL), i.e., lim sup
T→∞

(
T

2lnlnT

)1/2
(
µT
∑T

n=s hj,n−τ −Hj

)
= Oas(1)– e.g., Lai and Wei

(1983). Since bT `T = T as T → ∞, `T = o(T 1/4), it is clear that bT/T
3/4 → ∞

and
(

bT
2lnlnbT

)1/2

→ 0 [note that the condition `T = o(T 1/4) is necessary to have
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(
bT

2lnlnbT

)1/2

→ 0]. Therefore, we also have

sup
t≥RT

∣∣∣∣∣1t
t∑

n=s

(
h∗j,n−τ − µT

T∑
n=s

hj,n−τ

)∣∣∣∣∣ = Oas∗

((
bT

2lnlnbT

)1/2
)
, a.s.-P

in the bootstrap world. As a result, we have

sup
t≥RT

√
PT

t1+ν

∣∣∣∣∣
t∑

n=s

(
h∗j,n−τ − µT

T∑
n=s

hj,n−τ

)∣∣∣∣∣ = op∗(1) pr-P

for ν > 1/3. Lemma A.5 then follows by combining the above results.

A.2 Proof of main results

Proof of Theorem 3.1. From (A.12) in the proof of Lemma A.4, we have:

1√
PT

T∑
t=RT

(β̃∗j,t − θ̂j,t) =
H−1
j√
PT

T∑
t=RT

(
1

t

t∑
n=s

[
s∗j,n(θ̂j,t)− µT

T∑
n=s

sj,n(θ̂j,t)
])

+ op∗(1) pr-P.(A.14)

We can express s∗j,n(θ̂j,t) and sj,n(θ̂j,t) as:

s∗j,n(θ̂j,t) = X∗j,n−τ [y
∗
n −X∗

′

j,n−τ (θ̂j,t − β0
j )] = s∗j,n(β0

j )− h∗j,n−τ (θ̂j,t − β0
j )

sj,n(θ̂j,t) = Xj,n−τ [yn −X ′j,n−τ (θ̂j,t − β0
j )] = sj,n(β0

j )− hj,n−τ (θ̂j,t − β0
j )

so that (A.14) can be written as:

1√
PT

T∑
t=RT

(β̃∗j,t − θ̂j,t) =
H−1
j√
PT

T∑
t=RT

(
1

t

t∑
n=s

[
s∗j,n(β0

j )− µT
T∑
n=s

sj,n(β0
j )
])

−
H−1
j√
PT

T∑
t=RT

(1

t

t∑
n=s

(
h∗j,n−τ − µT

T∑
n=s

hj,n−τ
)(
θ̂j,t − β0

j

))
+ op∗(1) pr-P.(A.15)

From Lemma A.5, the second term of the RHS of (A.15) is op∗(1) pr-P. Therefore we

have

1√
PT

T∑
t=RT

(β̃∗j,t − θ̂j,t) =
H−1
j√
PT

T∑
t=RT

(
1

t

t∑
n=s

[
s∗j,n(β0

j )− µT
T∑
n=s

sj,n(β0
j )
])

+ op∗(1) pr-P.(A.16)

Now, from Fitzenberger (1998, Lemma 1), we have

1

t

t∑
n=s

EF ∗ [s∗j,n(β0
j )] = µT

T∑
n=s

sj,n(β0
j ) +Op

(
`TT

−1
)
,
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thus we can express (A.16) as

1√
PT

T∑
t=RT

(β̃∗j,t − θ̂j,t) =
H−1
j√
PT

T∑
t=RT

1

t

t∑
n=s

(
s∗j,n(β0

j )− EF ∗ [s∗j,n(β0
j )]
)

+ op∗(1) pr-P.(A.17)

By following the same steps as in Lemma A.2, we can write the RHS of (A.17) as:

H−1
j√
PT

T∑
t=RT

1√
T

(T/t)√
T

t∑
n=s

(
s∗j,n(β0

j )− EF ∗ [s∗j,n(β0
j )]
)

+ op∗(1) pr-P

=
√

1− ρH−1
j

(T/t)√
T

t∑
n=s

(
s∗j,n(β0

j )− EF ∗ [s∗j,n(β0
j )]
)

+ op∗(1) pr-P.

We deal with j = 2 and j = 1 separately. First, note as in the proof of Lemma A.2-(b) that

for j = 2, Lemma A.2-(a) along with the bootstrap sampling implies that

√
1− ρH−1

2

(T/t)√
T

t∑
n=s

(
s∗2,n(β0

2)− EF ∗ [s∗2,n(β0
2)]
)

=⇒
√

1− ρr−1H−1
2 Υ−1H

−1/2
2 Ã′B∗(r)

+oas∗(1) a.s− P,

where B∗(r) is a k2 dimensional vector of standard brownian motion.

As var
[√

1− ρr−1H−1
2 Υ−1H

−1/2
2 Ã′B∗(r)

]
= r−3(1− ρ)H−1

2 Υ−1H−1
2 ,

it is clear that

1√
PT

T∑
t=RT

(β̃∗2,t − θ̂2,t) =⇒ B
[
r−3(1− ρ)H−1

2 Υ−1H−1
2

]
a.s− P, (A.18)

which is the distribution of 1√
PT

∑T
t=RT

(θ̂2,t−β0
2) given in Lemma A.2. Similarly, for j = 2,

we find

1√
PT

T∑
t=RT

(β̃∗1,t − θ̂1,t) =⇒ B
[
r−3(1− ρ)H−1

1 J ′Υ−1JH−1
1

]
a.s− P, (A.19)

which also is the distribution of 1√
PT

∑T
t=RT

(β̂1,t − β0
1) given in Lemma A.2.

Overall, this results show that 1√
PT

∑T
t=RT

(β̃∗j,t − θ̂j,t) converges almost surely to the

asymptotic distribution of 1√
PT

∑T
t=RT

(θ̂j,t− β0
j ) for all j = 1, 2, thus establishing Theorem

3.1.

Proof of Theorem 3.2. TT and WT are asymptotically equivalent, it suffices to

establish the result for WT . Also, as the MSE loss differential in the numerator of

TT is related to the homoskedastic Wald statistics [see Hansen and Timmermann

36



(2015, Corollary 1)] regardless of whether the underlying process is homoskedastic

and regardless of whether the null hypothesis holds or not, we consider WT = ŜT −
ŜRT + σ−2

ε κ̌log(ρ) where σ̂2
ε(ŜT − ŜRT ) is equal to

S̃T − S̃RT = Ǔ ′
T,T
Ȟ−1

2 Ǔ
T,T
− T

RT

Ǔ ′
T,RT

Ȟ−1
2 Ǔ

T,RT
+ op(1)

+β′22

T∑
t=RT

Zt−τZ
′
t−τβ22 + 2

√
Tβ′22(Ǔ

T,T
− Ǔ

T,RT
), (A.20)

S̃T given in (2.8), Ǔ
T,T

= 1√
T

∑T
t=1 Zt−τε2t, S̃RT , ǓT,RT are the corresponding of both

respectively in the sub-sample with RT observations.

Now assume that β22 = 0. From the proof of Theorem 3 in Hansen and Timmer-

mann (2015, p.2503),

S̃T − S̃RT
d→ B(1)′Ω̌1/2

∞ Ȟ−1
2 Ω̌1/2

∞ B(1)− ρ−1B(ρ)′Ω̌1/2
∞ Ȟ−1

2 Ω̌1/2
∞ B(ρ) (A.21)

where Ω̌∞ is the log-run variance of the process {Zt−τε2t} and B(r) ∈ Dk2
[0,1]. Since

σ̂2
ε = σ2

ε +op(1), then WT is distributed as σ−2
ε times the limit distribution of S̃T − S̃RT

in (A.21). To establish the validity of the bootstrap for WT when β22 = 0, it suffices

to establish that W ∗
T converges to σ−2

ε times the limit distribution in (A.21) a.s.-P.
First, note that W ∗

T = Ŝ∗T − Ŝ∗RT + σ̂∗
−2

ε κ̌∗log(ρ), and under H0 along with the

results of Lemmas A.1-A.5, we can express σ̂∗
2

ε (Ŝ∗T − Ŝ∗RT ) as:

S̃∗T − S̃∗RT = Ǔ
∗′
T,T
Ȟ−1

2 Ǔ∗
T,T
− T

RT

Ǔ
∗′
T,RT

Ȟ−1
2 Ǔ∗

T,RT

+β′22

T∑
t=RT

Z∗t−τZ
∗′
t−τβ22 + 2

√
Tβ′22(Ǔ∗

T,T
− Ǔ∗

T,RT
) + op∗(1) pr − P,(A.22)

where the various quantities in stars are the analogues to the ones in (A.20) in the

bootstrap sample. It is easy to see from the model assumptions, along with the results

of Lemmas A.1-A.5, that

S̃∗T − S̃∗RT
d∗→ B∗(1)′Ω̌1/2

∞ Ȟ−1
2 Ω̌1/2

∞ B∗(1)− ρ−1B∗(ρ)′Ω̌1/2
∞ Ȟ−1

2 Ω̌1/2
∞ B∗(ρ), a.s− P∗(A.23)

under H0, where B∗(r) ∈ Dk2
[0,1]. Since B∗(r) in (A.23) and B(r) in (A.21) have the

same distribution, it is the case that (A.23) holds a.s.-P with B∗(r) replaced by B(r),

i.e.

S̃∗T − S̃∗RT
d→ B(1)′Ω̌1/2

∞ Ȟ−1
2 Ω̌1/2

∞ B(1)− ρ−1B(ρ)′Ω̌1/2
∞ Ȟ−1

2 Ω̌1/2
∞ B(ρ), a.s− P. (A.24)

Therefore W ∗
T has the same asymptotic distribution as WT a.s-P under H0.
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Proof of Theorem 3.3. Let c∞
0·T

(α) and c∞
0·W

(α) denote the (1−α)th quantiles under

H0 of the asymptotic distributions of TT and WT respectively. We know from (2.11)-

(2.12) that c∞
0·T

(α) <∞ and c∞
0·W

(α) <∞. From Theorem 3.2, we have

c∗
T

(α)
p→ c∞

0·T
(α) <∞, c∗

W
(α)

p→ c∞
0·W

(α) <∞ as T →∞. (A.25)

From (A.20) and the model assumptions, it is not hard to show that if β22 6= 0 is fixed,

then S̃T − S̃RT =⇒ ∞ because the first two terms in the RHS of (A.20) are Op(1),

while the last two terms diverge. As such, we also have S̃T − S̃RT
d→ ∞ since weak

convergence implies convergence in distribution. Since σ̂2
ε = σ2

ε + op(1) irrespective of

whether the value of β22, it follows that the above result implies that

WT
d→∞ if β22 6= 0. (A.26)

Theorem 3.3 follows by combining (A.25) and (A.26).
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