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Abstract

This paper investigates the impact of primary school zoning on housing prices in Australia. Using

comprehensive data on both schools and housing transactions in New South Wales along with the

combination of boundary and regression discontinuity design techniques, we find that the price of

houses located in high-performing side of primary school zone boundaries is, on average, about 2.7%

to 3.3% higher than that of similar houses located in low-performing side of these boundaries. This

finding provides not only an insight into the price elasticity of demand for high quality education, but

also has important policy implications as it highlights the need to address the potential educational

inequalities associated with school zoning in Australia.
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1 Introduction

Admission into public primary schools in most Australian states is generally contingent on a

student’s residential address, and New South Wales (NSW) is no exception. Each government

school within NSW has a designated intake zone and students residing within this area are

guaranteed admission. Although government schools may accept enrolments from outside their

designated zone, a school’s enrolment capacity is generally fulfilled by enrolling only those

students who reside in the school’s catchment area. This is especially the case for high-performing

public schools.

With limited admission into high-performing public schools, the capitalization of school

quality into the price of houses in high-performing school zones is inevitable. The willingness of

parents to pay a premium on property to secure their child’s enrolment into a high-performing

school is a widely recognised phenomenon. Many studies in the United States (US) and United

Kingdom (UK) have attempted to quantify this premium by, for example, coupling the boundary

fixed effects (BFE) analysis with other estimation strategies. In this paper, we focus on New

South Wales (Australia) and investigate the extent to which primary school zoning impacts

housing prices.

The BFE method was introduced by Black (1999) in this context to address concerns arising

from the fact that better schools tend to be located in affluent neighbourhoods, and students drawn

from these ‘privileged’ socioeconomic backgrounds generally have higher academic achievement.

A key assumption of the BFE strategy is that houses located near school attendance boundaries

and sufficiently close to one another share the same neighbourhood characteristics, therefore once

house characteristics have been controlled for, any difference in house prices across boundaries

is attributable to school quality (Black, 1999). Restricting the sample to housing sales located

within 250 metres of an attendance boundary, Black (1999) finds that a 5% increase in primary

school test scores (approximately one standard deviation) leads to a 2.5% increase in house

prices.

Since the seminal work of Black (1999), a number of studies have coupled the BFE technique

with additional controls relating to socio-economic characteristics, such as household income. In

doing so, studies like Kane et al. (2005) have established a greater fall in the estimated impact of

school test scores on housing prices compared to Black (1999). Fack and Grenet (2010) improve

the BFE estimation strategy by incorporating it into a matching framework under which identical

properties across school admission boundaries are matched. In addition to Fack and Grenet’s

(2010) matching framework, Gibbons et al. (2013) also propose to control for spatial trends (i.e.
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the distance between two houses on opposing sides of a school attendance boundary) in the BFE

model.

Fack and Grenet (2010) differs from much of the literature in that they explore the extent

to which housing prices react to the quality of education offered by neighbouring public and

private secondary schools. They establish that a one-standard deviation increase in public school

performance raises house prices by 1.4% to 2.4% in Paris (France). Their most remarkable

finding is that increased access to private schools tend to mitigate the impact of public school

performance on housing prices. Unlike Fack and Grenet (2010), the focus of many existing studies

has been solely on public primary school performance and attendance zones, thus ignoring school

choice and the variation in secondary school assignments. As a result, the estimates on the

capitalization of public school performance on housing prices could be biased downwards in these

studies, particularly when households on either side of the boundary do not share a secondary

school. This highlights an avenue for future research whereby, adopting the BFE approach, one

would simultaneously examine the primary and secondary public school attendance zoning effect

on house prices, upon controlling for access to private schooling.

With the exception of Davidoff and Leigh (2007), this topic is yet to be formally addressed

in Australia using appropriate recent econometric techniques. To the best of our knowledge,

we are not aware of an Australian study that investigates rigorously the relationship between

primary school zoning and housing prices. Using NSW as a case study, our study fills this gap

by estimating the extent to which primary school zoning impacts housing prices. We focus

on primary school zoning for two reasons predominantly. Firstly, it is well-established that

educational attainment in a child’s early years are positively correlated with academic and

economic success later in life (Gibbons and Machin, 2003). And secondly, receiving a high quality

primary education is often crucial for children to gain admission into selective secondary schools.

For these reasons, parents are likely to invest more into their child’s primary education, with the

expectation to get into a good quality secondary school. As such, parents are likely to pay a

premium on house prices to be located in a high-performing primary school zone. Our goal is to

quantify this premium.

To identify this premium, we couple the boundary discontinuity design (BDD) strategy

of Black (1999) with the regression discontinuity design (RDD) framework. The RDD has

been widely used in empirical studies and is considered the most credible non-experimental

strategy within the casual inference framework (Calonico et al., 2018). Its reliance on weak

non-parametric identifying assumptions enables flexible and robust estimation and inference for

local treatment effects (Calonico et al., 2018). The BDD is a special case of RDD. Embedding
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the BDD into the data selection procedure, we consider only those housing sales close to and on

either side of a school attendance boundary, upon maintaining the BFE key assumption (i.e.,

houses located near school attendance boundaries and sufficiently close to one another share the

same neighbourhood characteristics). Although maintaining this assumption addresses a number

of endogeneity concerns, it does not address the possibility of high-income households sorting

into high-performing school zones. Such sorting may contribute to higher average house prices

in performing school zones since high-income households are more likely to invest in property

improvements. Due to data limitation, we could not formally address this selection problem.

However, we have controlled for neighbourhood characteristics (including the median high and

low suburbs’ income) throughout all our estimations.

Our joint BDD & RDD identification strategy provides clearly a useful insight on the

capitalization of school performance into house prices in Australia in general, and New South

Wales in particular. We find that on average the price of a house located in a high-performing

primary school zone is approximately 2.7% to 3.3% higher than a similar house in a lower-

performing zone. To enable comparison with the existing literature, Table 1.1 below summarises

the estimated effects of school quality on house price from seven prior studies. All the estimates

measure the effect of a one-standard deviation increase in school quality on house prices, thus

enabling for a direct comparison across studies.

Table 1.1: Studies Estimating the Effect of School Quality on House Prices

Study Effect (%) Schooling Level Sample

Australia

Davidoff and Leigh (2008) 3.5 Secondary Australian Capital Territory

UK

Gibbons & Machin (2003) 3 to 10 Primary UK

Gibbons et al (2013) 3 Primary UK

USA

Black (1999) 2.5 Elementary Boston

Kane et al. (2005) 10 Elementary North Carolina

Bayer et al. (2007) 2.4 Middle San Francisco Bay Area

France

Fack & Grenet (2010) 1.4 to 2.4 Secondary Paris

Note: The RD effect is measured as the effect of a 1-s.d. increase in school performance on house
prices.
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The remainder of this paper is as follows. Section 2 describes the extraction process of data

and the construction of key variables. Section 3 outlines the empirical strategy employed. Section

4 presents the results, while Section 5 provides diagnostic checks validating the identification

strategy employed. Finally, Section 6 concludes.

2 Data

The data set used was provided by Australian Property Monitors (APM); a leading property

intelligence platform that has delivered comprehensive property data and analytics across

Australia since 1989. This extensive data set contains the sale price of all properties sold in New

South Wales between January 2014 and March 2019. Property characteristics are also included

within APM’s sales transaction data, enabling the construction and use of appropriate control

variables within the empirical analysis. Such characteristics include the property type, area size,

number of bedrooms, bathrooms and parking spaces, and a broad range of other property features.

These features include whether the property has an air conditioner, alarm, balcony, barbeque,

courtyard, ensuite, family room, fireplace, garage, heating, internal laundry, locked garage, polished

timber floor, pool, rumpus room, separate dining, spa, study room, sunroom, and walk-in wardrobe.

Each of these variables, aside from area size, number of bedrooms, bathrooms and parking spaces,

are dummy variables and thus, are not appropriate for our the regression discontinuity design

analysis that usually relies on continuity in the control variables.

To enable within-sample comparison, apartments and units were excluded from the analysis.

While townhouses are included within the sample, their area size was excluded since the land

area of a townhouse complex is often reported as the area size of an individual townhouse.

Furthermore, housing sales exceeding $6 million were excluded from the sample because these

sales often relate to large commercial parcels of land.

The APM data set also provides the precise location of each household. With this information

neighbourhood characteristics could be controlled for through suburb clustering and additional

controls. Suburb boundaries as well as the median household income of each suburb was obtained

from the Australian Bureau of Statistics (ABS) 2016 census data. Due to the ABS census

design, the median household income was recorded as an income range. For example, the median

household income in Bondi; an affluent Sydney suburb, lies between a lower bound of AU$156,000

and an upper bound of AU$181,999. As such, both the lower and upper bounds of median suburb

income were included in our analysis. The availability of geographical coordinates also allowed

for the implementation of Black’s (1999) boundary fixed effects method, thus enabling us to
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control for neighbourhood specific effects in our empirical strategy, as detailed later on.

Primary school catchment zones and data on New South Wales primary schools, including

their geographical coordinates, was obtained from the NSW Department of Education. The

data pertaining to NSW primary schools was filtered down to include only those public schools

located in metropolitan NSW. Again, to enable within sample comparison, only comprehensive,

non-selective, co-educational, kinder to year 6 public primary schools without an attached pre-

school or intensive English centre, operating within ordinary schooling hours were included in

the sample.

To identify low- and high-performing schools, researchers generally adopt measures such

as the proportion of students who reach the target level of attainment in standardized testing.

Australia’s standardized testing, first introduced in 2008, is known as the National Assessment

Program – Literacy and Numeracy (NAPLAN). However, with recent concerns over NAPLAN

testings ability to adequately rank schools (see e.g. Thompson and Cook, 2014; Wu, 2015; Rose

et al., 2018), we avoid using NAPLAN as schools’ performance measure. The challenge is then

wich measure should be used to rank schools? Many Australian parents are familiar with the

activities of Better Education, a free online community that provides a platform for linking

parents to schools. Aside from government platforms, Better Education is the most popular

school directory and education information website in Australia. It provides “state overall scores"

of schools and their related ranking. With the absence of any consensual measure of performance

in Australia, we hypothesize that most parents assess school performance using the resources

provided by Better Education. As such, we use their ranking as our performance measure of

primary schools in NSW. For the public primary schools in our sample, state overall scores range

from 68 to 100. Schools with a score that is strictly above 90 were deemed high-performing in our

baseline analysis, while the remaining were treated as lower-performing. A sensitivity analysis

shows that increasing this threshold to 95 leads to similar conclusions as those of the baseline 90

cut-off point.

In order to implement the boundary discontinuity design (BDD), data was extracted from

boundaries shared by high-performing and lower-performing school zones, as illustrated in Figure

2.1. The school on the left-hand side (LHS) of this figure, represented by a red circle with “0”, is

in a lower-performing school zone, while the school on the right-hand side (RHS) , represented

by a red circle with “1”, is in a high-performing school zone. Both share the boundary of interest,

represented by the dark line. Housing sales (represented by orange circles) within 200, 400 and

600 metres radius of the boundary were extracted to form our sample. The choice of this radius

was guided by previous studies, see e.g. Table 2.1 from applied studies where 153 and 610 metres
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were used as the minimum and maximum distances to the nearest boundary respectively. As

mentioned in the introduction, the key assumption of the boundary fixed effect (BFE) strategy

is that houses located near the boundaries and sufficiently close to one another share the same

neighbourhood characteristics. So, houses located farther away on either side of the boundary

are more likely to be dissimilar in those characteristics than houses close to the boundary. For

example, Black (1999) restricted the sample to housing sales located within 250 metres of the

boundary. Here, we vary the radius from 200, 400 and 600 metres to check the sensitivity of our

results to the BFE key assumption. In Figure 2.1, houses located on the LHS of the boundary

are part of the control group, while those located on the RHS of the boundary are in the treated

group. Hereinafter, we refer to the 200 metre, 400 metre, 600 metre radius as ‘Band 1,’ ‘Band

2’, and ‘Band 3’ respectively.

Figure 2.1: Data extraction
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Table 2.1: Distance to nearest boundary– previous literature

Study Max dist. to boundary (metres)

Ries and Somerville (2010) 250, 350, 500

Chiodo et al. (2010) 160

Dhar and Ross (2010) 305, 458, 610

Fack and Grenet (2010) 250, 300, 350

Dougherty et al.(2009) 245

Gibbons et al. (2009) 500*, 735*

Davidoff and Leigh (2008) 200, 500, 600

Bayer et al. (2007) 322

Kane et al. (2006) 153, 305, 610

Gibbons and Machin (2003) 250

Kane et al. (2003) 153, 305, 610

Black (1999) 242, 322, 564

Note: * indicates the average distance to the boundary and nearest
matched property.

Summary statistics of the key variables used in the RDD analysis for the 200 metre radius

(i.e., Band 1) are provided in Table 2.2. There are 2801 houses included in the sample for this

band, covering 70 shared boundaries between lower-performing and high-performing school zones.

The average log house price in this sample is about AU$13.91 (corresponding to an average

house price of around AU$1.1 million) with a standard deviation of AU$0.398 (i.e., AU$530,000).

The average land area within Band 1 is approximately 557 square metres, with a standard

deviation of 200 square metres. The average number of bedrooms in this band is about 3.6

bedrooms, with a standard deviation of 0.960. This average lies above the 3.1 bedroom average

of the whole of NSW estimated by the Australian Bureau of Statistics (2018) between 2017

and 2018. On average, Band 1 has 1.830 bathrooms and 1.871 parking spaces, with standard

deviations of 0.785 and 0.941, respectively. The average lower bound of the log median suburb

income is AU$11.603 (i.e., AU$109,425), with a standard deviation of AU$0.184 (i.e., AU$22,106).
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Meanwhile, the average upper bound of the log median suburb income is about AU$11.871 (i.e.,

AU$143,057), with a standard deviation of AU$0.182 (i.e., AU$28,556). As such, the dispersion

of the distribution in both income bounds are quite similar in Band 1.

Summary statistics of the complete list of variables (including the dummies) in Bands 1 to

3 are presented in Tables A.1, A.3, and A.5 in Appendix A.

Table 2.2: Summary statistics – Band 1

Mean Median Std.
Deviation Min. Max. Obs.

Log House Price 13.909 13.889 0.398 12.206 15.556 2801

Land Area 557.105 556 200.057 114 1183 2228

Bedrooms 3.455 3 0.960 1 9 2507

Baths 1.830 2 0.785 1 7 2487

Parking 1.871 2 0.941 1 12 2331

Median Suburb Income (LB) 11.603 11.552 0.184 11.082 12.112 2801

Median Suburb Income (UB) 11.794 11.775 0.182 11.264 12.245 2801

Median Income (LB) - the lower bound of median suburb income.

Median Income (UB) - the upper bound of median suburb income.

3 Empirical Strategy

We begin with the model specification in Section 3.1. Section 3.2 describes the estimation

strategy.

3.1 Model specification

We consider the sharp regression discontinuity (RD) design setting (see Cattaneo et al., 2018).

The unit of observation is ‘house’ and the outcome (dependent) variable of interest is (log)-price

of the house. Each house is located in a school zone, and schools are ranked through their

overall state score– those above a certain known threshold R̄ are considered ‘high-performing,’

while those below this threshold are considered ‘lower-performing.’ The treatment variable, T , is

binary indicating whether a given house is located in a high-performing school zone, i.e., houses

located in high-performing school zones are considered treated, while those in lower-performing
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school zones are considered not treated (control group). As such, the school overall state score

represents the running variable in this setting, i.e., the treatment is determined by this score

(Thistlethwaite and Campbell, 1960).

Let Z1,Z2, . . . ,ZJ denote the school zones for some finite integer J, and Rj be the overall

state score of school j located in zone Zj . Also, let Aj denote the set of houses located in zone

Zj (i.e., we have ∪
1≤j≤J

Aj = {1, 2, . . . , n} and Aj ∩ Ak = ∅ for all j 6= k), and Rij ≡ Rj be

the common value of the running variable for all i ∈ Aj . Then, for any j ∈ {1, 2, . . . , J}, the

treatment assignment rule for a given house i ∈ {1, 2, . . . , n} takes the form:

Tij ≡ Ti(Aj) = 1(Rij ≥ R̄) =


1 if Rij ≥ R̄

0 if Rij < R̄,

(3.1)

where 1(·) is the indicator function. This treatment assignment rule implies that the knowledge

of the house location automatically determines whether it is in the treatment group or the control

group; a key defining feature of any RDD– the probability of treatment assignment as a function

of the score changes discontinuously at the cut-off point.

We are interested in identifying the causal treatment effect, i.e the effect of school zoning

on house prices, within the potential-outcomes framework commonly used in the literature (see

e.g. Heckman and Vytlacil, 2007; Imbens and Wooldridge, 2009). For this purpose, let ln(p
(1)
ijt )

denote the potential outcome (i.e. log-price) of house i located in school zone j at time (in year)

t under the treatment condition, and ln(p
(0)
ijt ) its potential outcome without treatment (control

group). The treatment effect is obtained by comparing the potential outcomes, ln(p
(1)
ijt ) and

ln(p
(0)
ijt ). Note that even if house i is supposed to have both ln(p

(1)
ijt ) and ln(p

(0)
ist ), only one of

these outcomes is observed in practice. For example, if house i were located in a high-performing

school zone, one will only observe ln(p
(1)
ijt ) and ln(p

(0)
ijt ) will remain latent (unobserved). Similarly,

if house i were located in a lower-performing school zone, one will observe ln(p
(0)
ijt ) and ln(p

(1)
ijt )

will be latent. In this setting, the observed outcome (log-price) of house i is expressed as:

ln(pijt) = (1− Tij)ln(p
(0)
ijt ) + Tijln(p

(1)
ijt ) =


ln(p

(0)
ijt ) if Rij < R̄

ln(p
(1)
ijt ) if Rij ≥ R̄.

(3.2)

Suppose that we observe a random sample
{

(pijt, Tij , Rij , Xijt)
′ : i = 1, . . . , n; j = 1, . . . , J ; t =

1, . . . , T0

}
, whereby Xijt includes the observed house and neighbourhood (zones) characteristics.

We are interested in the Sharp RD treatment effect, which is given under mild continuity
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conditions, by the estimand

τSRD = E
[
ln(p

(1)
ijt )− ln(p

(0)
ijt ) | Rij = R̄

]
(3.3)

that is often referred to as the average treatment effect at the cut-off, E[.] denotes the expectation

with respect to a relevant probability measure P. This parameter captures the treatment effect

for units (houses) with score values Rij = R̄, i.e., it answers the question what would be the

average log-price change for units with score level Rij = R̄ if we switched their status from control

to treated? As such, τSRD is, by construction local in nature, i.e., it is not informative about

the treatment effects at other levels of the score Rij in the absence of additional assumptions.

Also, Sharp RDD implies that all units (houses) with Rij = R̄ are treated, so τSRD is a local RD

average treatment effect on the treated. Hahn et al. (2001) show that units with very similar

values of the score but on opposite sides of the cut-off can be compared. In particular, among

other conditions, if E
[
ln(p

(1)
ijt ) | Rij = R

]
and E

[
ln(p

(0)
ijt ) | Rij = R

]
, seen as functions of R, are

continuous at R = R̄, then in the Sharp RDD considered above, it is the case that

τSRD = lim
R↓R̄

E
[
ln(p

(1)
ijt ) | Ri = R

]
− lim

R↑R̄
E
[
ln(p

(0)
ijt ) | Ri = R

]
, (3.4)

which is nonparametrically identifiable; Hahn et al. (2001); Imbens (2004); McCrary (2008); Lee

and Lemieux (2010).

In this study, we hypothesize that τSRD > 0. Indeed, each public school in NSW has a

designated intake zone and students residing within this zone are guaranteed admission. Therefore,

one expects that parents seeking to guarantee a place for their child in a high-performing public

school will pay a premium to secure a house within that high-performing school intake zone.

As such, a house located in a high-performing school zone will, on average, have a higher price

compared with a similar house in a lower-performing school zone.

In identifying this causal treatment effect, it is important to minimize any bias that may

result from the unobserved (or confounding) house characteristics possibly correlated with school

performance. To enable the controlling for these confounding factors, we have adopted the

boundary discontinuity design (BDD) technique, focusing exclusively on the set of sales that take

place in close proximity to, but on either side of, school attendance boundaries (Black, 1999). The

boundaries of interest are those shared by high-performing (treated group) and lower-performing

(control group) school zones. Therefore, our identification strategy is that houses close to, but on

opposite sides of a common boundary share similar unobserved neighbourhood characteristics,

i.e., these unobserved characteristics vary continuously at the boundary. The difficulty in
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assessing the validity of this strategy is that it is not possible to directly test for continuity in the

unobservable characteristics. However, one can test for continuity in the observed characteristics

of houses, and continuity in the latter suggests that the unobserved characteristics are also

relatively unchanging (Cattaneo et al., 2018). If the observed characteristics were continuous

and predetermined (i.e. determined before treatment assignment), then the difference in house

prices are directly attributable to treatment. Continuity in observed covariates implies that the

treatment effect on these covariates is zero at the cut-off. If this were the case, there should be

no systematic difference between houses located near the boundaries between high-performing

and lower-performing zones. Assessing this continuity assumption on covariates forms the basis

of our first validity test in Section 5.1.

3.2 Estimation method

As discussed in Section 2, in the practical implementation of our joint RDD & BDD strategy, we

use the assigned baseline cut-off point value of 91 (which is slightly above 90). Houses located

in school zones with an overall state score equal to or greater than 91 are in the treated group,

while those located in school zones with a score less than 91 form the control group. Given this

information, we proceed with the graphical and statistical analyses.

Firstly, we explore evidence of a discontinuity at the cut-off through a preliminary analysis

of the RD plots, as is often the case in most RDD applications. Using a global polynomial fit

of order 4, the RD plots provide a smooth approximation of the overall shape of the estimated

regression function for both the treated and control groups. Conceptually, RD plots approximate

the estimated regression function by bins upon finding the mean of observations falling within

each bin of the running variable (i.e., the score in this study), and plotting the average outcome

in each bin against its mid-point. Combining all these bins allows one to visualise the overall

shape of regression functions and provide information about the local behaviour of the data, thus

enabling one to observe both the RD treatment effect and the variability of the data around

the cut-off (Cattaneo et al., 2018). Due to the nature of our data set, all RD plots are run in

quantile-spaced (QS) bins. QS bins are most appropriate as they contain approximately the

same number of observations and are directly comparable in terms of data variability.

Secondly, we proceed by running clustered, naive and covariate adjusted regressions after

this preliminary analysis of plots. The covariate adjusted regressions are run with the 6 key

covariates, as well as all the 26 covariates. Although many of the 26 covariates violate the

continuity assumption, the RD treatment effect estimate is qualitatively the same as that of

the baseline 6 key covariates case, thus indicating some form of robustness of our results to the
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continuity assumption. In each case, a local linear RD treatment effect is estimated using uniform

kernel weights with optimal bandwidth selected using the mean square error (MSE) criterion. As

highlighted by (Cattaneo et al., 2018), unlike the global polynomial RD estimation, the local

RD estimation avoids over-fitting the data, are less sensitive to outliers, and provide a good

approximation of the RD treatment effect at boundary points. Furthermore, although higher

order polynomials generally improve the accuracy of the approximation, they often deteriorate

the efficiency of the estimate due to increased variability. We select the optimal bandwidths

of equal length on each side of the cut-of using the MSE criterion based on the standard error

produced in the naive estimation (i.e., the estimation no covariate). In Section 5.3, we check the

sensitivity of the estimates to the bandwidth choice by selecting the optimal bandwidth using a

criterion based on coverage errors rate (CER), and the results are qualitatively similar to those

presented here. A uniform kernel was used to give equal weight to all observations within the

interval, but the estimates are not generally sensitive to the choice of kernel (Cattaneo et al.,

2018). Finally, given that the data was clustered in suburbs, employing variance estimators that

are robust to the clustered nature of the data was necessary.

4 Results

We first present the main results for the 200, 400, and 600 metre bands respectively in Section

4.1. Section 4.2 extends to an assigned cut-off score of 95.

4.1 Main results

We begin with the the 200 metre band (Band 1). The RD plot of the outcome variable (log

house price) for this band is shown in Figure 4.1. The LHS of the figure shows the plot for the

control group, while the plot in the RHS is for the treated group. The figure provides preliminary

evidence of a discontinuity in housing prices at the 91 cut-off points.
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Figure 4.1: Continuity– Band 1

The RD estimate, i.e., the systematic difference in log housing prices between high-performing

and lower-performing school zones is presented in Table 4.1. The first row presents the RD

estimate with no control variables (Naive). The second row shows the estimate with 6 key control

variables; land area, bedrooms, bathrooms, parking, upper median income bound and lower median

income bound. Finally, the third row presents the RD estimate with 26 control variables, all

of which are listed in Table A.2 in the Appendix. Column 3 shows the optimal Bandwidth

selected by the MSE criterion. Columns 4 and 5 present the RD estimate and its standard error

respectively. Columns 6 and 7 present the robust, bias corrected p-value and the 95% confidence

interval of the RD estimate, respectively. Finally, column 8 presents the total number of effective

observations used in the estimation.

Table 4.1: RD estimates– Band 1

Robust Inference

Controls MSE-Optimal
Bandwidth RD Estimate Std. Error P-Value 95% CI Obs.

Naive 0 1.346 0.443*** 0.111 0.000 0.283 0.793 353

Covariate Adjusted (1) 6 1.318 0.421*** 0.151 0.003 0.167 0.813 210

Covariate Adjusted (2) 26 1.398 0.344*** 0.122 0.002 0.153 0.715 229

* 10% significance level, ** 5% significance level, *** 1% significance level.
Covariate Adjusted (1): land area, bedrooms, bathrooms, parking, lower median income bound, and upper median income
bound.
Covariate Adjusted (2): See Table A.2 in the appendix for the list of covariates.

With a positive treatment effect ranging from 0.344 to 0.443, each of the regressions outlined
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in Table 4.1 shows significance of the treatment at the 1% nominal level. First, excluding all

control variables, the naive estimation generates a treatment effect of 0.443. Second, once 6

covariates are controlled for (land area, number of bedrooms, bathrooms, parking spaces and,

upper and lower median income bounds), the RD estimate fell to 0.421, but is still significant

at the 1% nominal level. The difference in point estimates between the two sets of regressions

is relatively small, but the 95% confidence interval for the covariate-adjusted local polynomial

RD estimation is wider. This may be due to a fall in the number of observations (353 to 210

observations) or, it may suggest that the inclusion of covariates was less efficient– i.e, it did not

add to the accuracy of the estimation (Cattaneo et al., 2018). Finally, including all 26 control

variables lowers the RD estimate compared to the naive and 6 covariate estimations. The RD

estimate stands now at 0.344, and is significant at the 1% nominal level. The associated confidence

bound is narrower than that with 6 covariates, however, given the uncertainty surrounding the

APM’s data collection process1, it is possible that the estimate with 6 covariates is more reliable.

In the data, the minimum and maximum logged house price in Band 1 for lower-performing

zone sample is AU$12.874 (i.e., AU$390,038.21 in level approximately) and AU$15.520 (i.e.,

AU$5,498,577.61 in level approximately), respectively. If houses within lower-performing school

zones had instead relocated to the high-performing side of the boundary, an estimated average

treatment effect of 0.421 (6 covariates case) translates to a housing price jump of 2.7% to 3.3%.2

We now expand this analysis to include houses within 400 and 600 metres (Band 2 and

Band 3, respectively) of school attendance boundaries. With a radius of just 200 metres, Band

1 ensures that neighbourhood characteristics on either side of the boundaries are relatively

similar, supporting the boundary fixed effects (BFE) assumption of Black (1999). Although this

assumption becomes less credible as we move further from the boundary, expanding the sample

coverage area to Band 2 and Band 3 allows us to exploit more data, potentially enabling us to

check the robustness of our results to the violation of the BFE assumption.

Considering Band 2 (i.e., a 400 metre radius) first, the RD plot of housing prices for both

the control (LHS of the figure) and treated (RHS of the figure) groups is shown in Figure 4.2. It

illustrates a systematic difference between the price of houses located in lower-performing school

zones and those located in high-performing school zones.

1The APM data set does not distinguish between a scenario where a property’s features have not been recorded
and a scenario where a property does not have a feature. For example, a property may have an air conditioner
but it has not been recorded or, a property does not have an air conditioner - in both instances the APM data set
reports this feature as missing.

2These percentages are obtained as 0.421
15.520

× 100 = 2.7% and 0.421
12.874

× 100 = 3.3%.
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Figure 4.2: Continuity– Band 2

Looking at this figure, the size of the discontinuity appears relatively small compared to that

in Figure 4.1 (the 200 metre radius). Precisely, the RD estimates for Band 2 are presented in

Table 4.2 below.

Table 4.2: RD estimates– Band 2

Robust Inference

Controls MSE-Optimal
Bandwidth RD Estimate Std. Error P-Value 95% CI Obs.

Naive 0 1.241 0.205** 0.111 0.039 0.023 0.920 554

Covariate Adjusted (1) 6 1.405 0.468** 0.174 0.012 0.118 0.944 489

Covariate Adjusted (2) 26 1.610 0.414** 0.166 0.040 0.020 0.880 634

* 10% significance level, ** 5% significance level, *** 1% significance level.
Covariate Adjusted (1): land area, bedrooms, bathrooms, parking, lower median income bound, and upper median income bound.
Covariate Adjusted (2): See Table A.4 in the appendix for the list of covariates.

As seen from the table, the RD estimates are positive and significant at the 5% nominal level.

The naive estimation (i.e., when no covariate is accounted for) generates a treatment effect of

0.205. Once the 6 baseline covariates are controlled for, the estimated treatment effect increases

to 0.468 and is significant at 2% (the p-value is 0.012). Finally, controlling for all 26 covariates

results in an estimated RD treatment effect of 0.414 and is significant at 4% (the p-value is 0.040).

Again, if we focus on the key 6 covariate case, the estimated treatment effect in Band 2 is quite

close to that in Band 1 (see Table 4.1). Specifically, the RD estimate in Band 2 is about 0.047

higher than that in Band 1. Note, however, that the significance of the estimated treatment

effect has faded marginally in Table 4.2 (Band 2) compared with that in Table 4.1 (Band 1),
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due probably to decreased estimate precision (i.e., increased standard error estimates). These

results indicate clearly that the treatment effect does not disappear as one moves from Band 1

to Band 2, i.e., an additional 200 metres from the boundary. This finding aligns with Davidoff

and Leigh (2007) which finds a significant change in the price of houses located within 200 and

500 metres of a school attendance boundary. Again, the minimum and maximum logged house

price in the subsample of houses on the lower-performing side of the boundaries for Band 2 are

AU$12.931 (approximately AU$412,916.22) and AU$15.538 (approximately AU$5,598,448.14),

respectively. Therefore, a treatment effect estimate of 0.468 translates to a housing price jump of

3% to 3.6%, from lower-performing school zone to high-performing school zone.

Let us now expand the analysis to Band 3 (i.e., a 600 metre radius). Figure 4.3 below shows

the RD plot of housing prices for both the control and treated groups. As seen, evidence of

a discontinuity in housing prices at the cut-off is apparent. Again, this discontinuity appears

smaller than that observed in Band 1 (see Figure 4.1).

Figure 4.3: Continuity– Band 3

Table 4.3 below reports the associated RD estimates. The naive model (model without

covariates) predicts an average treatment effect of 0.407, which is significant at the 1% nominal

level. When 6 key covariates are controlled for, the estimated treatment effect increases to

0.413, and is significant at the 1% nominal level. However, this increase is only 0.008 with

regards to that of the baseline naive model. Notably, the 95% confidence interval associated

with the covariate adjusted estimation is narrower than that of the naive model. This generally

implies that the covariates were successfully included within the estimation– i.e., they add to the

accuracy of the estimation. The minimum and maximum logged house price in the subsample of
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houses on the lower-performing side of the boundaries for Band 3 are AU$12.502 (approximately

AU$268,874.50) and AU$15.586 (approximately AU$5,873,727.51), respectively. Therefore, if a

house within a lower-performing school zone had instead relocated to the high-performing side

of the boundary, an estimated average treatment effect of 0.413 (i.e., the 6 key covariate case)

translates to a house price jump of 2.6% to 3.3% in Band 3. This price range is slightly wider

than the estimated price jump in Band 1. Both Band 1 and Band 3 estimate a maximum

price jump of about 3.3% but Band 3 predicts a minimum price jump about 0.1% lower than

Band 1. This may suggest that as the distance from the boundary increases beyond 600 metres,

the treatment effect begins to decline. Again, it is important to recall that the boundary fixed

effects assumption is less credible as houses located further away from the boundary are included

within the sample. As such, the estimated treatment effect obtained from Band 3 controls for

the unobserved neighbourhood characteristics to a lesser extent compared with that from Band

1.

Table 4.3: RD estimates– Band 3

Robust Inference

Controls MSE-Optimal
Bandwidth RD Estimate Std. Error P-Value 95% CI Obs.

Naive 0 1.589 0.407*** 0.143 0.002 0.181 0.789 1799

Covariate Adjusted (1) 6 1.277 0.413*** 0.081 0.000 0.233 0.623 891

Covariate Adjusted (2) 26 1.172 0.398*** 0.089 0.000 0.222 0.609 801

* 10% significance level, ** 5% significance level, *** 1% significance level.
Covariate Adjusted (1): land area, bedrooms, bathrooms, parking, lower median income bound, and upper median income bound.
Covariate Adjusted (2): See Table A.6 in the appendix for the list of covariates.

4.2 Increasing the assigned cut-off

To test the sensitivity of the results to the assigned cut-off score of 91, a secondary data set was

constructed using a cut-off score of 95. Schools with an overall state score strictly less than 95

now form the lower-performing school zones subsample whilst schools scoring equal to or greater

than 95 form that of the high-performing school zones. The housing sales within Band 1, 2,

3 now share 83 boundaries between high- and lower-performing school zones. This data was

extracted to produce the average RD treatment effect at the 95 cut-off. The results for the model

with the 6 key covariates for the pooled 83 boundaries is shown in Table 4.4.
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Table 4.4: All 83 boundaries at 95 cut-off

Robust Inference
MSE-Optimal
Bandwidth RD Estimate Std. Error P-Value 95% CI Obs.

Band 1 1.216 -0.003 0.102 0.778 -0.191 0.255 526

Band 2 1.509 0.020 0.070 0.946 -0.140 0.150 1724

Band 3 1.320 -0.028 0.079 0.566 -0.211 0.116 2903

Note: 6 key covariates are used– land area, bedrooms, bathrooms, parking, lower median
income bound, and upper median income bound.

Looking at the table, the estimated RD treatment effect is not significant even at the 10%

nominal level for all three bands. This may suggest that there is no evidence of a treatment

effect when a cut-off of 95 is applied. However, because the RD treatment effect was positive

and significant a the cut-off of 91, it is likely that there are many boundaries shared by schools

with an overall state score between 91-94 and those with an overall state score above 95 in the

pooled data. Therefore, classifying those schools (scoring 91 to 94) as lower-performing, and

comparing them with schools above 95, as done in Table 4.4, is absorbing any treatment effect

that may exist. To avoid boundaries where high-performing schools are compared with one

another, we exclude all boundaries which have a lower-performing score between 91 and 94. This

leaves us with just 31 out of the 83 overall boundaries. With distinction, lower-performing school

zones now consist of schools with an overall state score strictly less than 91, and high-performing

schools zones consist of schools with an overall state score equal to or greater than 95. The

assigned cut-off of 95 is unchanged. The RD estimates for the three are presented in Table 4.5

below.

Table 4.5: RD estimates with the reduced sample at 95 cut-off

Robust Inference
MSE-Optimal
Bandwidth RD Estimate Std. Error P-Value 95% CI Obs.

Band 1 476.194 0.490*** 0.111 0.001 0.179 0.725 66

Band 2 679.430 0.365 0.092 0.205 -0.118 0.553 346

Band 3 206.872 0.366*** 0.116 0.005 0.127 0.699 219

* 10% significance level, ** 5% significance level, *** 1% significance level.
Note: 6 key covariates are used– land area, bedrooms, bathrooms, parking, lower median
income bound, and upper median income bound.

From Table 4.5, the RD estimates for Bands 1 and 3 are positive and significant at the 1%
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nominal level. The estimated RD treatment effect in Bands 1, although not significant, is large–

around 0.365. This is likely due to the very large bandwidth selected in this case.

In Band 1, for the subsample of houses located in lower-performing school zones, the

minimum and maximum logged house price is AU$13.028 (approximately AU$454,976.02 in

level) and AU$15.520 (approximately AU$5,498,577.61), respectively. A treatment effect of 0.490

therefore translates to a house price jump of 3.2% to 3.8% if a Band 1 house in a low-performing

school zone were exposed to treatment. In Band 2’s lower-performing sample, the minimum

and maximum logged house price is 12.931 and 15.538, respectively. A treatment effect of 0.365

therefore translates to a house price jump of 2.3 to 2.8% in Band 2. Similarly, in Bands 2,

a treatment effect of 0.365 translates to a house price jump of 2.3% to 2.8% from control to

treatment, while this price jump is from 2.3% to 3.1% in Bands 3. These results support our

previous findings in Section 4.1.

4.3 Discussion and policy implications

The analysis from the previous sections suggests found evidence of a positive RD treatment effect

whether a cut-off of 91 or 95 is applied, as summarised in Table 4.6 below. For each band, the

table presents the range of the estimated RD treatment effect at both the 91 and 95 cut-off.

Table 4.6: Summary of RD treatment effect estimates

Treatment Effect (%)

91 Cut-Off 95 Cut-Off

Band 1 [2.7 , 3.3]*** [3.2 , 3.8]***

Band 2 [3.0 , 3.6]** [2.3 , 2.8]

Band 3 [2.6 , 3.3]*** [2.3 , 3.1]***

*10% significance level, **5% significance level,
***1% significance level.

Consider the 91 cut-off first, we see that in Band 1 a house located in a high-performing

school zone is, on average, 2.7% to 3.3% more expensive than a similar house in a lower-performing

school zone. This estimated treatment effect ranges between 3% to 3.6% for Band 2 and between

2.6% to 3.3% for Band 3. Looking now at the 95 cut-off, the results are quite similar to that

found for the 91 cut-off. For Band 1, a house located in a high-performing school zone is, on

average, 3.2% to 3.8% more expensive than a similar house in a lower-performing school zone.
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For Band 2 and Band 2, this estimated treatment effect ranges between 2.3% to 2.8% and

2.3% to 3.1%, respectively.

Clearly, these results indicate a systematic difference in housing prices between high-performing

and lower-performing school zones. This finding provides an insight into the price elasticity

of demand for high quality education. It further provides existing and future property owners

with an understanding of property valuations. Such an understanding may be pivotal in the

financial planning of new families who wish to enrol their children into a high-performing public

school. The capitalization of school performance into house prices also has important policy

implications. By restricting access to high-performing schools predominantly to those who can

afford to live in-zone, students from lower income households are being priced out of high quality

education. This has the capacity to exacerbate educational inequality and further segregate

high- and low-income families as they continually sort into high-performing and lower-performing

school zones, respectively.

If a disparity in household income between high-performing and lower-performing school zones

persists, more Australian schools may become socioeconomically disadvantaged.3 Additionally,

the resources that contribute to students’ academic success, such as teacher quality, school funding,

parents’ social capital, and student peer characteristics, may become more unequally distributed

since low-income areas presumably offer fewer resources than high-income areas. The link between

school resources and school socioeconomic standing is outlined in the Programme for International

Student Assessment (PISA), recently conducted by the OECD in 2015. According to PISA, the

level of teacher resources available in Australian disadvantaged schools was significantly lower

than the OECD average in 2015. Teachers in disadvantaged Australian schools were generally less

qualified, less experienced and had higher rates of absenteeism. Moreover, Australia was one of

the few OECD countries in which the student-to-teacher ratio was poorer in disadvantaged than in

advantaged schools. With a clear lack of resources in disadvantaged schools, it is unsurprising that

socioeconomically disadvantaged students in Australia were achieving at a level approximately

three years behind their socioeconomically advantaged peers in 2015 and, 12% of the variation in

student performance in financial literacy was associated with socio-economic status (Thomson

et al., 2017).

The PISA findings highlight the gap in educational achievement between disadvantaged and

advantaged Australian schools and, potentially, high- and low-income school zones. This gap

may be amplified by reducing low-income households, who cannot afford housing premiums

in high-performing school zones and presumably offer limited resources, to lower-performing

3Disadvantaged schools are defined as those schools in which the average socio-economic background of
students is below the national average.
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school zones. Since education is highly associated with future social and economic outcomes, the

widening of this gap has the potential to heighten the cycle of disadvantage. Putting student

education aside, the sorting of high-income households into high-performing school zones may

further exacerbate the cycle of disadvantage since high-performing school zones generally have

favourable neighbourhood qualities. These qualities include; proximity to employment, shopping

and recreational conveniences (Kane et al., 2005).

The drawbacks of school zoning could perhaps be mitigated by allowing for additional

considerations, other than residential address, in the enrolment of students. Or, what if school

zoning was abolished in Australia? If so, access to high quality education should not be limited

by family wealth and, students from disadvantaged backgrounds should have equal access to high-

performing public schools. If abandoning school zoning is implausible, the Australian government

should ensure that all Australian public schools are receiving the financial resources necessary to

improve the educational outcomes of students in lower-performing (hence lower-income) school

zones. As it stands, the provision of public funding for government and non-government schools

is a heavily debated topic in Australia. Although public school enrolments outnumber private

school ones annually, Australian public school students gained just $155 of public funding over the

2007 to 2017 period, while private school students were given $1429 of public funds (Goss, 2019).

Allocating a greater proportion of public funds to public schools, especially those located in low

socioeconomic areas4, will likely enhance the educational outcomes of students from low-income

households. The allocation of additional funds to low-performing public schools, which likely

comprise of students from low-income households, should increase access to the resources which

contribute to student academic success.

Drawing from the Japanese education system, strategies other than funding can be used

to mitigate the negative effects of school zoning in Australia. Although Japan spends less on

education than many other developed countries, Japan ranks highly among its peers in providing

equal education to high- and low-income students (OECD, 2016). According to the OECD’s 2015

PISA report, only 9%, as opposed to 12% for Australia, of the variation in student performance

in Japan is explained by students’ socioeconomic background (OECD, 2016; Thomson et al.,

2017). The success of Japan’s education system can be attributed to a number of factors. Firstly,

Japan’s teachers are allocated to schools by the local education authority. Under this system,

teachers periodically change schools throughout their career and are given incentives to teach in

4Australian Bureau of Statistics (2016) ranks areas in New South Wales according to relative socio-economic
advantage and disadvantage. Within this data set each suburb in NSW is assigned a decile number. The lowest
10% of suburbs are given a decile number of 1 and so on, up to the highest 10% of suburbs which are given a
decile number of 10. Suburbs with a decile number of 1 are the most disadvantaged relative to the other deciles.
Using this, we identified 9 suburbs in low-performing school zones that have a decile number strictly less than 6.
Therefore, in terms of their level of disadvantage, these 9 suburbs are in the lowest 50% of suburbs in NSW.
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disadvantaged schools. This ‘career-based’ system ensures that all schools have access to effective

teachers and maintain a balance of experienced and less-experienced teachers. Secondly, Japan’s

teachers are paid more than the OECD average and the profession has high barriers to entry.

Introducing a career-based system in Australia and higher barriers to entry could potentially

prevent high concentrations of inexperienced and less-qualified teachers in disadvantaged or

low-income schools, potentially easing the educational inequalities associated with school zoning.

5 Falsification

The section provides empirical tests validating the assumptions of the boundary and regression

discontinuity design.

5.1 Continuity in predetermined covariates

The validity of any RD analysis relies on the discontinuity of the outcome variable (i.e. house

prices) at the cut-off point. To ensure that this discontinuity is directly attributable to treatment,

it is important that covariates which are correlated with the outcome of interest are continuous

at the cut-off. To check the continuity of key covariates in our study, we present the RD plots of

these key covariates. Figure 5.1 shows these plots for Band 1. The plots for Band 2 and Band

3 are presented in the Appendix in Figures A.1 and A.2 respectively.

Figure 5.1: Continuity in key covariates– Band 1
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From these graphs, there is no obvious discontinuity in the upper median income bound at

the cut-off. However, a discontinuity in the land area, number of bathrooms, parking spaces, the

lower bound of median income, and in some sense the number of bedrooms, is apparent. We

conduct statistical tests to confirm these facts.

A different curvature and overall shape of each covariate can be observed through Figure 5.1,

implying that the estimated regression function for each covariate differs. As such, the optimal

Bandwidth used to estimate continuity in covariates will differ for each variable and must be

re-estimated in each case (Cattaneo et al., 2018). For this reason, we conduct statistical analysis

for each covariate separately. We estimate a local linear RD treatment effect with uniform kernel

weights and MSE-optimal Bandwidths. To shorten the presentation, here we present the results

for the key covariates in Table 5.1 below. The RD treatment effect estimates for all 26 covariates

are given in Table A.2 in the Appendix for Band 1, and in Tables A.4 & A.6 for Band 2 and

Band 3, respectively.
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Table 5.1: Continuity of key covariates– Band 1

RD
Estimate

Robust
P-Value

Land Area -191.740 0.000***

Bedrooms 0.605 0.034**

Bathrooms 0.772 0.000***

Parking Spaces 0.079 0.822

Median Income (LB) 0.053 0.045**

Median Income (UB) 0.023 0.274

*10% significance level, **5% significance level, ***1%
significance level.

As seen from the table, the RD estimate is strongly significant for land area and bathrooms

(with robust p-values of 0.000). The estimate is also significant at the 5% nominal level for

number of bedrooms and the lower bound of median income. Only the estimates of parking spaces

and the upper bound of median income are not statistically significant - even at the 10% nominal

level (p-value of 0.822 and 0.274 respectively). Therefore, there is strong evidence of a systematic

difference at the cut-off in land area, number of bathrooms, number of bedrooms, and the lower

bound of median income. This means that these covariates do not pass the continuity test at the

cut-off. However, both parking spaces and the upper bound of median income are continuous at

the cut-off. Continuity in these covariates at the cut-off may suggest that unobservable house

and neighbourhood characteristics are also relatively unchanging.

These results are similar to Black (1999); Kane et al. (2005); Bayer et al. (2007), who

also found systematic differences in house or neighbourhood characteristics on the high- and

lower-scoring side of school boundaries. These differences likely reflect residential sorting whereby

higher income households sort onto the performing side of the boundary. Nevertheless, each of

the aforementioned studies included variables that were significantly different on opposing sides

of school attendance boundaries because their omission could lead to upward bias (Black, 1999).

Furthermore, although discontinuity in covariates typically may cast doubt on the assumptions

underlying the RD design, it does not necessarily invalidate the approach (Imbens and Lemieux,

2008). For these reasons, we include all covariates in our analysis. It is also important to mention

that the statistical significance of the RD treatment effect estimate is unchanged when these

24



discontinuous covariates are left out of the analysis, and it persists even if no covariate is used

(see the naive estimates in Tables 4.1-4.3).

5.2 Sensitivity to observations near the cut-off

Following Cattaneo et al. (2018), this falsification approach determines whether a systematic

manipulation of the score value has taken place. Manipulation, if present, would generally involve

the observations close to the cut-off. By excluding these observations and repeating the RD

estimation, one can test for manipulation in the running variable (here the score). Furthermore,

this approach also provides a test to assess the sensitivity of the results to the extrapolation

inherent in local polynomial estimation (Cattaneo et al., 2018). Indeed, since the observations

close to the cut-off are the most influential when fitting the local polynomials, excluding them

would mean that one is testing not only for manipulation, but also for result sensitivity to the

removal of observations closer to the cut-off.

To run this test, we exclude houses located in school zones with an overall state score of 91

and re-estimate the RD treatment effect. Both the control group and the 91 cut-off score remain

unchanged, while the treatment group now consists of houses in school zones with scores strictly

above 91. As observations near the boundaries have been eliminated, the continuity in covariates

at the cut-off is no longer guaranteed, so we shall focus on the baseline naive RD treatment effect

estimates. To shorten the presentation, we show the RDD estimate for Band 1 but our results

are qualitatively the same for the other bands. Table 5.2 below contains the result. The first

row of the table reports the previous naive RDD estimates in Table 4.1, whereas the second row

shows the new naive estimate. As seen, the RD treatment effect estimated with the new data

is about 0.975 and is significant at 5% nominal level. Although this estimate is approximately

double that of the original estimation (row on the bottom part of the table), both are positive

and highly significant, rejecting the null hypothesis of no systematic difference in prices between

high- and lower- performing school zones. Clearly, our findings in Section 4 remain qualitatively

unchanged when observations close to the cut-off are excluded. As such, the results are not overly

sensitive to observations near the cut-off.
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Table 5.2: Testing for manipulation in the score– Band 1

Robust Inference
MSE-Optimal
Bandwidth RD Estimate Std. Error P-Value 95% CI Obs.

Original 1.346 0.443*** 0.111 0.000 0.283 0.793 353

Newly Adjusted 2.276 0.975** 0.415 0.021 0.165 2.008 470

Note: *10% significance level, **5% significance level, ***1% significance level.

5.3 Sensitivity to bandwidth choice

In this section, we analyse the sensitivity of our results to the bandwidth choice. Instead of

removing observations near the cut-off, this test adds or removes observations at the endpoints.

We perform the test with the key covariates and use Band 1 housing sales. The results for Band

2 and Band 3 are qualitatively the same as those shown here, therefore are omitted to shorten

the presentation. Table 5.3 below compares the RD estimate generated when using the mean

squared errors (MSE) criterion with that obtained using the coverage error rates (CER) criterion.

As seen from Table 5.3, the results are quite similar. Using the MSE-optimal bandwidth resulted

in an RD treatment effect estimate of about 0.421, while the one from CER-optimal bandwidth

is around 0.426. Both are significant at that 1% nominal level. This suggests that our results are

not very sensitive to the choice of the bandwidth.

Table 5.3: Sensitivity to the bandwidth choice– Band 1

Robust Inference
Bandwidth RD Estimate Std. Error P-Value 95% CI Obs.

MSE Optimal Bandwidth 1.318 0.421*** 0.151 0.003 0.167 0.813 210

CER Optimal Bandwidth 1.043 0.426*** 0.120 0.000 0.226 0.722 159

* 10% significance level, ** 5% significance level, *** 1% significance level.
Note: 6 key covariate used– land area, bedrooms, bathrooms, parking spaces, lower median income bound, and
upper median income bound.

6 Conclusion

In this paper, we use comprehensive data on housing transactions from January 2014 to March

2019 to investigate the existence of a house price differential between high-performing and

lower-performing school zones in New South Wales (Australia). Using the RD treatment setting,
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we find that residing in a high-performing primary school zone results in paying, on average, a

premium on housing of approximately 2.7% to 3.3% compared with residing in a lower-performing

school zone. This result is robust to a number of sensitivity checks, and is in line with that of

existing studies in the US and UK. Given the median house price of $870 000 in New South

Wales in March 2019 (Australian Bureau of Statistics, 2019), our RD treatment effect estimate

suggests that the price of a house located on the high-performing side of a school boundary is on

average $23,490 to $28,710 higher than that of a similar house located on the lower-performing

side of the boundary.

It is worth noting that school attendance boundaries provided to us by the New South Wales

Department of Education date back to before January 2014. However, the construction of new

schools and the expansion of existing schools between January 2014 and March 2019 may have

caused a shift in school zoning. In addition, due to data limitation, we could not directly address

issues related to sorting into neighbourhood, whereby high-income families tend to cluster around

high-performing school zones. Moreover, although omitted variable bias has been relatively

mitigated through the adoption of the boundary discontinuity design technique, it may not be

ruled out completely. Despite these limitations, our findings provide home owners, parents and

policy-makers with a useful insight into the capitalization of primary school performance into

housing prices in Australia, and New South Wales in particular.
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Appendices

A Descriptive Statistics

Table A.1: Summary statistics– Band 1 (91 cut-off)

Mean Median
Std.

Deviation
Min. Max. Obs.

Key Variables

House Price 13.909 13.889 0.398 12.206 15.556 2801

Land Area 557.105 556 200.057 114 1183 2228

Bedrooms 3.455 3 0.960 1 9 2507

Baths 1.830 2 0.785 1 7 2487

Parking 1.871 2 0.941 1 12 2331

Median Suburb Income (LB) 11.603 11.552 0.184 11.082 12.112 2801

Median Suburb Income (UB) 11.794 11.775 0.182 11.264 12.245 2801

Dummy Variables

Air Conditioning 0.431 0 0.495 0 1 2801

Alarm 0.132 0 0.339 0 1 2801

Balcony 0.187 0 0.390 0 1 2801

Barbeque 0.065 0 0.247 0 1 2801

Courtyard 0.134 0 0.340 0 1 2801

Ensuite 0.317 0 0.465 0 1 2801

Family Room 0.019 0 0.135 0 1 2801

Fireplace 0.122 0 0.327 0 1 2801

Garage 0.078 0 0.269 0 1 2801

Heating 0.124 0 0.330 0 1 2801

Internal Laundry 0.194 0 0.396 0 1 2801

Lockup Garage 0.187 0 0.390 0 1 2801

Polished Timber Floor 0.145 0 0.352 0 1 2801

Pool 0.056 0 0.229 0 1 2801

Rumpus Room 0.098 0 0.298 0 1 2801

Separate Dining 0.151 0 0.358 0 1 2801

Spa 0.041 0 0.198 0 1 2801

Study 0.218 0 0.413 0 1 2801

Sunroom 0.047 0 0.212 0 1 2801

Walk-in Wardrobe 0.084 0 0.277 0 1 2801
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Table A.2: Covariate Check– Band 1 (91 cut-off)

RD

Estimate

Robust

P-value

Key Covariates

Land Area -191.740*** 0.000

Bedrooms 0.605** 0.034

Bathrooms 0.772*** 0.000

Parking Spaces 0.079 0.822

Median Income (LB) 0.053** 0.045

Median Income (UB) 0.023 0.274

Dummy Covariates

Air Conditioning 0.605** 0.034

Alarm 0.772*** 0.000

Balcony 0.079 0.822

Barbeque 0.053** 0.045

Courtyard 0.023 0.274

Ensuite -0.320*** 0.00

Family Room 0.048 0.544

Fireplace -0.004 0.255

Garage 0.056 0.892

Heating 0.030 0.632

Internal Laundry 0.150 0.227

Lockup Garage 0.026 0.333

Polished Timber Floor 0.052 0.581

Pool -0.021 0.780

Rumpus Room -0.127 0.137

Separate Dining -0.017 0.971

Spa -0.042 0.529

Study 0.060 0.605

Sunroom -0.022 0.508

Walk-in Wardrobe -0.065 0.271
*10% significance level, **5% significance level,***1% significance level.
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Table A.3: Summary statistics– Band 2 (91 cut-off)

Mean Median
Std.

Deviation
Min. Max. Obs.

Key Variables

House Price 13.965 13.940 0.448 7.258 15.556 5089

Land Area 568.885 560 204.246 127 1195 4176

Bedrooms 3.566 3 0.999 1 12 4515

Baths 1.932 2 0.849 1 9 4492

Parking 1.928 2 0.909 1 12 4223

Median Suburb Income (LB) 11.640 11.552 0.197 11.082 12.245 5089

Median Suburb Income (UB) 11.823 11.775 0.188 11.264 12.363 5089

Dummy Variables

Air Conditioning 0.446 0 0.497 0 1 5089

Alarm 0.006 0 0.075 0 1 5089

Balcony 0.204 0 0.403 0 1 5089

Barbeque 0.070 0 0.254 0 1 5089

Courtyard 0.128 0 0.334 0 1 5089

Ensuite 0.339 0 0.473 0 1 5089

Family Room 0.019 0 0.135 0 1 5089

Fireplace 0.120 0 0.325 0 1 5089

Garage 0.093 0 0.290 0 1 5089

Heating 0.130 0 0.336 0 1 5089

Internal Laundry 0.193 0 0.395 0 1 5089

Lockup Garage 0.189 0 0.391 0 1 5089

Polished Timber Floor 0.149 0 0.356 0 1 5089

Pool 0.071 0 0.256 0 1 5089

Rumpus Room 0.117 0 0.321 0 1 5089

Separate Dining 0.155 0 0.362 0 1 5089

Spa 0.046 0 0.210 0 1 5089

Study 0.231 0 0.422 0 1 5089

Sunroom 0.048 0 0.213 0 1 5089

Walk-in Wardrobe 0.103 0 0.303 0 1 5089
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Figure A.1: Continuity in key covariates– Band 2 (91 cut-off)
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Table A.4: Covariate Check– Band 2 (91 Cut-Off)

RD

Estimate

Robust

P-value

Key Covariates

Land Area -33.093 0.333

Bedrooms 0.098 0.420

Bathrooms 0.315* 0.088

Parking Spaces -0.085 0.802

Median Income (LB) 0.055 0.253

Median Income (UB) 0.030 0.308

Dummy Covariates

Air Conditioning -0.282*** 0.005

Alarm 0.015 0.697

Balcony -0.089* 0.095

Barbeque -0.031 0.300

Courtyard -0.023 0.660

Ensuite 0.073 0.571

Family Room -0.085*** 0.000

Fireplace -0.003 0.880

Garage -0.105* 0.054

Heating -0.106** 0.049

Internal Laundry 0.190** 0.013

Lockup Garage 0.168** 0.023

Polished Timber Floor -0.021 0.558

Pool -0.067** 0.028

Rumpus Room -0.070 0.172

Separate Dining 0.150*** 0.005

Spa 0.010 0.696

Study 0.112* 0.071

Sunroom 0.020 0.575

Walk-in Wardrobe 0.102** 0.024
*10% significance level, **5% significance level,***1% significance level.
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Table A.5: Summary Statistics– Band 3 (91 Cut-Off)

Mean Median
Std.

Deviation
Min. Max. Obs.

Key Variables

Dwelling Price 13.944 13.914 0.430 7.258 15.586 12853

Median Suburb Income (LB) 11.617 11.552 0.193 10.621 12.245 12835

Median Suburb Income (UB) 11.802 11.775 0.186 10.859 12.363 12835

Land Area 562.647 557 197.054 82 1197 10569

Bedrooms 3.536 3 0.979 1 14 11478

Baths 1.882 2 0.834 1 9 11419

Parking 1.907 2 0.901 1 13 10743

Dummy Variables

Air Conditioning 0.448 0 0.497 0 1 12853

Alarm 0.006 0 0.080 0 1 12853

Balcony 0.198 0 0.399 0 1 12853

Barbeque 0.069 0 0.253 0 1 12853

Courtyard 0.121 0 0.327 0 1 12853

Ensuite 0.319 0 0.466 0 1 12853

Family Room 0.020 0 0.141 0 1 12853

Fireplace 0.112 0 0.316 0 1 12853

Garage 0.096 0 0.295 0 1 12853

Heating 0.123 0 0.328 0 1 12853

Internal Laundry 0.190 0 0.392 0 1 12853

Lockup Garage 0.188 0 0.391 0 1 12853

Polished Timber Floor 0.149 0 0.356 0 1 12853

Pool 0.067 0 0.251 0 1 12853

Rumpus Room 0.116 0 0.320 0 1 12853

Separate Dining 0.157 0 0.364 0 1 12853

Spa 0.044 0 0.205 0 1 12853

Study 0.228 0 0.419 0 1 12853

Sunroom 0.047 0 0.211 0 1 12853

Walk-in Wardrobe 0.103 0 0.304 0 1 12853
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Figure A.2: Continuity in key covariates– Band 3 (91 cut-off)
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Table A.6: Covariate Check– Band 3 (91 Cut-Off)

RD

Estimate

Robust

P-value

Key Covariates

Land Area -106.350*** 0.000

Bedrooms 0.200 0.101

Bathrooms 0.247*** 0.007

Parking Spaces 0.160* 0.077

Median Income (LB) 0.091* 0.058

Median Income (UB) 0.100** 0.021

Dummy Covariates

Air Conditioning -0.174** 0.039

Alarm 0.014 0.503

Balcony -0.013 0.959

Barbeque 0.008 0.834

Courtyard -0.036 0.454

Ensuite 0.046 0.715

Family Room -0.058*** 0.000

Fireplace -0.004 0.782

Garage -0.059** 0.050

Heating -0.049 0.099

Internal Laundry -0.011 0.858

Lockup Garage 0.117** 0.024

Polished Timber Floor 0.006 0.776

Pool 0.004 0.524

Rumpus Room -0.038 0.542

Separate Dining 0.146*** 0.000

Spa -0.035* 0.069

Study 0.015 0.606

Sunroom 0.031 0.164

Walk-in Wardrobe -0.003 0.862
*10% significance level, **5% significance level,***1% significance level.
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B RD estimates

Table B.1: RD Estimates– Bands 1-3 (91 Cut-Off)

Robust Inference

Controls MSE-Optimal
Bandwidth RD Estimate Std. Err P-value 95% CI Obs.

Band 1

Naive 0 1.346 0.443*** 0.111 0.000 0.283 0.793 353

Covariate Adjusted (1) 6 1.318 0.421*** 0.151 0.003 0.167 0.813 210

Covariate Adjusted (2) 26 1.398 0.344*** 0.122 0.002 0.153 0.715 229

Band 2

Naive 0 1.241 0.205** 0.111 0.039 0.023 0.920 554

Covariate Adjusted (1) 6 1.405 0.468** 0.174 0.012 0.118 0.944 489

Covariate Adjusted (2) 26 1.610 0.414** 0.166 0.040 0.020 0.880 634

Band 3

Naive 0 1.589 0.407*** 0.143 0.002 0.181 0.789 1799

Covariate Adjusted (1) 6 1.277 0.413*** 0.081 0.000 0.233 0.623 891

Covariate Adjusted (2) 26 1.172 0.397*** 0.089 0.000 0.222 0.609 801

*10% significance level, **5% significance level,***1% significance level.
Note 1: Covariate Adjusted (1) includes 6 control variables - land area, number of bedrooms, bathrooms, parking spaces and,
upper and lower bounds of median income.
Note 2: Covaraite Adjusted (2) includes 26 control variables - see list of variables in Table A.06 above.
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