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Abstract 

Cross-sectional models are useful for quantifying the impact that climate or climate change 

may have on grape prices due to changes in grape quality. However, these models are 

susceptible to omitted variable bias. The aim of this study is to estimate the impact of growing 

season temperature (GST) on grape prices using cross-sectional data for Australia, while 

controlling for growing season precipitation, regional yield, variety, and other 103 

characteristics that relate to the production system of the wine regions. We estimate this model 

using (area) weighted least squares and variables from a principal component analysis (PCA) 

to control for the characteristics that relate to the production system. This estimation strategy 

allows us to decrease omitted variable bias while avoiding multicollinearity and over-

controlling issues. We show that failing to control for characteristics that relate to the 

production system overestimates the impact of GST and hence, climate change. This finding is 

confirmed by a LASSO model that also incorporates variables from the PCA, which we 

estimate as a robustness check using a cross-fit partialing-out estimator (double machine 

learning).  

Keywords: omitted variable bias, climate impact, grape quality, grape price, climate change 

 

1. Introduction 

Cross-sectional models allow one to quantify the impact that climate or climate change may 

have on grape prices due to changes in grape quality. Webb et al. (2008) studied the 

temperature-quality relationship in grapes in Australia using cross-sectional data. That study 

failed to control for variables that are correlated with the variable of interest and that may have 

an influence in the dependent variable, possibly leading to biased estimates of the variable of 

interest. This is a standard issue with cross-sectional models, as they are very susceptible to 

omitted variable bias. Panel data models, by contrast, have better identification properties and 

are less susceptible to omitted variable bias. However, panel data models estimate the impact 

of weather shocks rather than climate. These estimates do not account for adaptation and may 

be less useful when estimating the potential impact of climate change.  

The aim of this study is to estimate the impact of growing season temperature (GST) 

on grape prices in Australia using cross-sectional data. GST is the most widely used thermal-

based bioclimatic index in viticulture (Liles and Verdon‐Kidd, 2020). While extreme 

temperatures can have a major influence on grape quality (Cola et al., 2019), GST is a useful 

bioclimatic index that is highly related to grape quality (Jones et al., 2011). 
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 The difference between our analysis and the one of other researchers such as Webb et 

al. (2008) is that our models intend to control for 105 characteristics that may influence price 

and that may be correlated with GST. We do this by first performing a principal component 

analysis (PCA) for reducing the dimensionality of the data that relate to the production system 

of each region. Then we use the principal components as control variables, which allows us to 

deal with omitted variable bias issues, while avoiding problems of multicollinearity and 

overcontrol. As a robustness check, we use a LASSO model for inference. This is, to our 

knowledge, the first cross-sectional analysis of the impact of a weather variable on grape prices 

that controls for numerous characteristics of the production system.  

2. Data 

We use data for Australia on average price by variety and region, average bearing area by 

variety and region, and average yield by region, from Anderson and Aryal (2015). These data 

are mostly available for 2001 to 2012, although we drop 2009 and 2011 as for those years there 

are no data on area and regional yield. For each region, and for the same time period, we obtain 

spatial data on temperature and precipitation from Scientific Information for Land Owners 

(SILO) (Jeffrey et al., 2001), based on the area covered by the geographical indication (GI) of 

each region. We construct two mean weather variables: growing season average temperature 

(GST), which is our independent variable of interest; and total growing season precipitation 

(GSP). While the length of the growing season varies between varieties and regions in Australia 

(Pearson et al., 2021), and also between years (Cameron et al., 2021, Jarvis et al., 2019), we 

define growing season as the period between October and April.  

We also use data on 103 characteristics of the production system of each region, from 

an Australian Wine Research Institute (AWRI) survey (Nordestgaard, 2019). The first column 

of Appendix Table 1 lists these 103 variables. While the data on grape prices and weather 

variables is available for a larger number of regions, our estimation dataset includes 26 regions 

because those are the regions for which we have information from the AWRI survey. Table 1 

shows summary statistics for the 26 regions in our dataset. Each variety-by-region combination 

constitutes an observation. Since the regions have 33.1 varieties on average, the total number 

of observations is 861. 

Table 1: Summary statistics for the 26 regions.   

Variable Minimum Mean SD Maximum 

Price ($/T) 410 1198 462 2453 

GST (℃) 14.2 18.3 1.7 21.6 

GSP (mm) 155 323 128 569 

Yield (T/ha) 3.1 7.8 3.8 20.7 

Varieties 1 33.1 17.8 75 

Notes: GST is the growing season average temperature, GSP is the growing 

season total precipitation, Yield is the average regional yield, and Varieties 

is the number of varieties.  

3. Methods 

The aim of our estimation strategy is to identify the impact of GST on grape prices. The 

baseline model is:  

𝑙𝑛𝑃𝑟𝑖𝑐𝑒𝑣𝑟 = 𝛼 + 𝛾𝐺𝑆𝑇𝑟 + 𝜇𝑣 + 𝜀𝑣𝑟, (1) 
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where 𝑙𝑛𝑃𝑟𝑖𝑐𝑒𝑣𝑟 is the natural logarithm of the average price of variety 𝑣 in region 𝑟 across 

the time period. The variable of interest, 𝐺𝑆𝑇𝑟, is the mean GST in region 𝑟 in that same period, 

and 𝛾 is the coefficient of interest. 𝜇𝑣 are variety fixed effects that control for price differences 

between varieties. 𝛼 is a constant and 𝜀𝑣𝑟 is an error term.  

However, model (1) is susceptible to omitted variable bias. Other climate variables and 

characteristics of the production system that influence price may be correlated with GST. 

Failing to include these variables can lead to an incorrect estimation of the effect of GST on 

the price of grape. Therefore, we estimate:  

𝑙𝑛𝑃𝑟𝑖𝑐𝑒𝑣𝑟 = 𝛼 + 𝛾𝐺𝑆𝑇𝑟 + 𝛽1𝐺𝑆𝑃𝑟 + 𝛽2𝑌𝑖𝑒𝑙𝑑𝑟 + 𝜇𝑣 + 𝜀𝑣𝑟. (2) 

The control variables 𝐺𝑆𝑃𝑟 and 𝑌𝑖𝑒𝑙𝑑𝑟 are the mean GSP and average regional yield, 

respectively, in region 𝑟, for the time period.  

While model (2) incorporates two control variables (i.e., 𝐺𝑆𝑃𝑟 and 𝑌𝑖𝑒𝑙𝑑𝑟), this model 

is still susceptible to omitted variable bias. Other characteristics of the production system that 

affect price are also correlated with GST. Ideally, we would like to incorporate the 103 

variables from the AWRI survey that relate to the production system of each region. This is 

doable if we use principal component analysis (PCA) for data reduction. The goal here is to 

use the principal components as control variables that account for characteristics in the 

production system of each region. Therefore, we estimate: 

𝑙𝑛𝑃𝑟𝑖𝑐𝑒𝑣𝑟 = 𝛼 + 𝛾𝐺𝑆𝑇𝑟 + 𝛽1𝐺𝑆𝑃𝑟 + 𝛽2𝑌𝑖𝑒𝑙𝑑𝑟 + ∑ 𝜑𝑗𝑃𝐶𝑗𝑟
𝑗=𝑘
𝑗=1 + 𝜇𝑣 + 𝜀𝑣𝑟. (3) 

𝑃𝐶𝑗𝑟 is the 𝑗 (out of 𝑘) principal component of region 𝑟, and 𝜑𝑗 is its coefficient.  

We use two approaches for choosing the number of principal components. First, we 

choose all the components with eigenvalues greater than one. Second, we look at a scree plot 

to choose the principal components. For inspecting how useful the principal components from 

this second step are, we use them to perform a k-means cluster analysis based on the Euclidean 

distance between observations. Then, we choose the optimal cluster solution based on the 

Calinski-Harabasz stopping rule. The intuition here is that if the classification looks reasonable, 

these first principal components may be suitable for accounting for characteristics of the 

production systems of the regions.  

We use weighted least squares (WLS) for estimating models (1), (2), and (3). The 

weight is the average area of variety 𝑣 in region 𝑟 during the time period. Since GST and the 

control variables are region-specific, we cluster standard errors by region. As a robustness 

check, we use ordinary least squares (OLS) with robust standard errors clustered at the regional 

level.   

In addition to the abovementioned models, as a robustness check, we estimate the 

impact of GST on grape prices using LASSO for inference. Specifically, we use the cross-fit 

partialing-out estimator, also known as double machine learning. The potential control 

variables that we incorporate in the model are GSP, regional yield, all the varieties, and all the 

components from the PCA that have eigenvalues greater than one.  

4. Results 
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The results for models (1) and (2) show that the coefficients of GST are negative and 

statistically significant at the 1% level (see Table 2). The interpretation is that a GST increase 

of 1℃ leads to a decrease in price of 24% based on model (1), or 19.4% based on model (2). 

(GST impact in percentage = (EXP(GST coefficient)-1)*100). The coefficient of GST is of 

lower magnitude in model (2), after controlling for GSP and regional yields.  

Table 2: Estimation results.  

Variable Model (1) Model (2) Model (3) 

GST -.2742*** 

(.0243) 

-.2151*** 

(.0321) 

-.0946** 

(.0412) 

GSP  -.0006 

(.0004) 

-.0006*** 

(.0002) 

Yield  -.0349*** 

(.0082) 

-.0054 

(.0057) 

PC1   -.0371** 

(.0149) 

PC2   .0259** 

(.0107) 

PC3   -.0544*** 

(.0118) 

PC4   -.0065 

(.0055) 

Constant 11.4275*** 

(.4968) 

10.7362*** 

(.6083) 

8.3806*** 

(.8101) 

R2 0.8689 0.9117 0.9402 

Notes: * = 10% significance level, ** = 5% significance level, 

and *** = 1% significance level. GST is the growing season 

average temperature (℃), GSP is the growing season total 

precipitation, Yield is the average regional yield, and PC 

stands for principal component. Models (1) to (3) include 

variety fixed effects (results omitted to save space).  

Model (3) incorporates principal components from the PCA of the production systems 

of the regions. The PCA leads to 22 principal components with eigenvalues higher than one, 

which explain 98% of the variance in the data (see Figure 1). We estimate model (3) with the 

first 22 principal components as control variables. However, a post-estimation analysis of the 

variance inflator factors (VIFs) of the independent variables show strong evidence of 

multicollinearity with this specification.  



5 

 

 
Figure 1: Scree plot of eigenvalues after PCA.  

 

Therefore, we estimate model (3) by using only the first four principal components, 

which explain 47% of the variance in the data. The second column of Appendix Table 1 shows 

the percentage of each of the 103 variables that relate to the production system that is explained 

by the first four principal components. For this specification, the analysis of the VIFs of the 

independent variables suggest that multicollinearity is not an issue. For inspecting how useful 

these first four principal components may be as a proxy of the production system of the regions, 

we use these components for clustering the 26 regions. The Calinski-Harabasz stopping rule 

suggests that six groups is the optimal solution for our k-means cluster analysis (see Table 3). 

We believe that this six-group classification looks plausible and hence, that the first four 

principal components are useful for controlling for regional production systems characteristics 

that may affect prices. The last seven columns of Appendix Table 1 show the average value of 

each of the 103 variables that relate to the production system, for each of the six clusters and 

for all the regions combined.  

Table 3: Six-group classification based on the first four principal components.  

Cluster Regions 

1 Beechworth, Geelong, Macedon Ranges, Mornington Peninsula 

2 Barossa Valley, Clare Valley, Eden Valley, McLaren Vale, Mudgee, Rutherglen 

3 Murray Darling, Riverina, Riverland 

4 Coonawarra, Heathcote, Langhorne Creek, Wrattonbully  

5 Great Southern, Hilltops, Hunter, Orange 

6 Adelaide Hills, Granite Belt, Tasmania, Yarra Valley, Margaret River 

 

The results of model (3) show that GST is statistically significant at the 5% level (see 

Table 2). The interpretation is that a GST increase of 1℃ leads to a decrease of 9% in the 

average price of grapes. When compared to models (1) and (2), the magnitude of the GST 
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coefficient is 2.9 and 2.3 times lower, respectively. The goodness of fit of model (3) is also 

higher than that of models (1) and (2). These results show how cross-sectional estimations of 

the impact of climate on grape prices can be susceptible to omitted variable bias. Our OLS 

estimations for these three models, which we use as robustness checks, also show that the 

magnitude of the GST coefficient is substantially lower for model (3).  

The LASSO model, which we use as our robustness check, uses 45 controls out of 126 

potential controls incorporated in the model. GST is statistically significant at the 1% level, 

and its magnitude is slightly lower than in model (3): its coefficient value is -0.0759 and its 

standard error is 0.0295. The interpretation of this coefficient is that a GST increase of 1℃ 

leads to a decrease of 7.3% in the price of grapes. These results reinforce our argument on the 

importance of controlling for variables that relate to the production system.  

5. Discussion 

The progression of the results from model (1) to model (3) shows the importance of controlling 

for variables other than region and variety when estimating the impact of weather on grape 

prices. The results from the LASSO model reinforces this idea. The cross-sectional approach 

to estimate the impact of climate is susceptible to omitted variable bias. This can be addressed, 

to a certain extent, by including control variables in the model. However, an excessive number 

of control variables can also lead to multicollinearity and over-controlling issues. This study 

shows how PCA can be used for dealing with these issues while still controlling for relevant 

variables in the model.  

Nevertheless, while model (3) controls for GSP and characteristics of the production 

system, it still has at least four limitations. First, the estimate of GST may still be biased. This 

is because there are other characteristics that influence grape quality and that may be correlated 

with GST, but that are not accounted for in the model. Second, due to data limitations, the 

independent variables are based on regional characteristics rather than variety-by-region 

characteristics. Third, the impact of the weather variables may be nonlinear. We explore 

alternate model specifications, such as including square values of GST and/or GSP, but 

concluded that including only the levels is preferred. Fourth, model (3) assumes that the impact 

of GST on (the natural logarithm of) grape prices does not vary across regions or varieties.  

In reality, the impact of GST may and differ across regions and varieties. To explore 

part of this possibility, we allow the effect of GST to vary for the three most planted varieties 

in Australia: Syrah, Cabernet Sauvignon, and Chardonnay. The coefficients are not statistically 

significant for Syrah and Cabernet Sauvignon, while the coefficient for Chardonnay is positive 

and statistically significant at the 5% level. Therefore, these results suggest that while an 

increase in GST leads to a lower price for Chardonnay, that change in price is smaller than for 

other varieties such as Syrah and Cabernet Sauvignon. 

Despite the abovementioned limitations, model (3) provides a useful estimate of the 

potential impact that climate change may have on grape prices in a ceteris paribus scenario. 

Table 4 combines the results from the three models with the climate change projections from 

Remenyi et al. (2019), to quantify the potential impact that changes in GST by 2050 could have 

on grape prices due to changes in quality. Based on the estimates of model (3), the price of 

grapes is projected to decrease by between 8.1% and 14.4% across regions, or 11.8% on 

average. Assuming that the GST coefficient in model (3) is correct, using the estimates of 
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models (1) or (2) would overestimate the impact of changes in GST by 166% or 114%, 

respectively. These differences suggest that adaptations in the production system may help to 

mitigate some of the quality losses that may be induced by climate change.  

Table 4: Projected impact of forecasted changes in GSTs (between 1997-2017 

and 2041-2060) on grape prices based on the estimates of the three models. 

Region GST (℃)  Projected impact (%) 

 

1997-

2017 

2041-

2060 

 Model 

(1) 

Model 

(2) 

Model 

(3) 

Adelaide Hills 17.9 19  -26.4 -21.3 -9.9 

Barossa Valley 19 20.3  -31.2 -25.2 -11.7 

Beechworth 17.8 19.4  -38.4 -31.0 -14.4 

Clare Valley 19.1 20.4  -31.2 -25.2 -11.7 

Coonawarra 17.3 18.7  -33.6 -27.1 -12.6 

Eden Valley 18.4 19.5  -26.4 -21.3 -9.9 

Geelong 17.2 18.3  -26.4 -21.3 -9.9 

Granite Belt 18.7 20.1  -33.6 -27.1 -12.6 

Great Southern 18 19.5  -36.0 -29.0 -13.5 

Heathcote 18.5 19.8  -31.2 -25.2 -11.7 

Hilltops 19.5 21  -36.0 -29.0 -13.5 

Hunter 20.2 21.4  -28.8 -23.2 -10.8 

Langhorne Creek 19.2 20.1  -21.6 -17.4 -8.1 

Macedon Ranges 16.2 17.5  -31.2 -25.2 -11.7 

Margaret River 18.9 20.3  -33.6 -27.1 -12.6 

McLaren Vale 18.6 19.8  -28.8 -23.2 -10.8 

Mornington Peninsula 17.4 18.6  -28.8 -23.2 -10.8 

Mudgee 19.5 20.9  -33.6 -27.1 -12.6 

Murray Darling 21.9 23.2  -31.2 -25.2 -11.7 

Orange 18.1 19.5  -33.6 -27.1 -12.6 

Riverina 21.8 23.3  -36.0 -29.0 -13.5 

Riverland 21.1 22.4  -31.2 -25.2 -11.7 

Rutherglen 19.7 21.2  -36.0 -29.0 -13.5 

Tasmania 14.4 15.6  -27.6 -22.3 -10.4 

Wrattonbully 17.5 19  -36.0 -29.0 -13.5 

Yarra Valley 16.3 17.5  -28.8 -23.2 -10.8 

Average 18.5 19.9  -31.4 -25.4 -11.8 

Notes: GST is the growing season average temperature. Estimated with the three 

models’ results, based on climate change projections from Remenyi et al. (2019). 

 

6. Conclusion 

We have estimated the effect of GST on grape prices using cross-sectional data for Australia. 

Our results show how cross-sectional models can be susceptible to omitted variable bias. In 

particular, failing to control for characteristics of the production systems that are influenced by 

GST can overestimate the true impact of GST on grape prices. Our results also show how price, 

due to changes in grape quality, is influenced by the production system. This finding suggests 

that changes in the production systems may help reduce quality losses from climate change. 

From a statistical perspective, this study shows how PCA results can be used to control for 
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numerous characteristics of the production system, reducing the susceptibility of cross-

sectional analyses to omitted variable bias while avoiding issues of multicollinearity and 

overcontrol. LASSO models, such as the one that we have used as a robustness check, can also 

be used for getting estimates that are less susceptible to omitted variable bias. Further research 

could explore other variables affecting grape prices or quality, incorporate new control 

variables, and/or apply this or a similar approach to other countries.  
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Appendix  

Appendix Table 1: Explained variance by the first four principal components, and average values for 

each cluster of regions and for the all the regions combined, for the 103 variables that relate to the 

characteristics of the production system of each region. 

Variable Explained 

(%) 

 Group of regions (average values) 

 1 2 3 4 5 6 All 

Median age (years) 8  19 22 17 20 20 18 19 

Median row spacing (m) 67  2.5 3.1 3.3 2.9 3.1 2.6 2.9 

Median vine spacing (m) 66  1.5 1.9 2.1 1.8 1.7 1.6 1.8 

Median plant density (vines/ha) 70  2839 1737 1451 1951 1950 2528 2091 

Median row length (m) 56  118 208 293 259 191 158 199 

Median row yield (kg/row) 85  117 417 2061 605 423 291 566 

Single cordons 62  74 84 40 91 96 72 78 

Multiple cordons 62  26 16 60 9 4 28 22 

Row direction: N-S 47  64 49 33 45 62 59 53 

Row direction: E-W 48  23 39 54 46 31 26 35 

Row direction: NE-SW 35  0 2 10 6 4 10 5 

Row direction: NW-SE 24  12 4 3 3 2 5 5 

Row direction: contour 21  0 6 0 1 2 1 2 

Post material: wood CCA treated 16  52 73 79 52 49 70 63 

Post material: wood creosote treated 51  6 10 11 45 0 1 12 

Post material: wood untreated 49  26 1 0 0 2 21 8 

Post material: metal 66  15 15 9 1 49 8 16 

Post material: plastic 22  2 1 0 3 0 0 1 

Post material: other 17  0 1 0 0 0 0 0 

Rootstocks 39  54 39 47 33 10 28 35 

Pruning: cane 89  77 14 0 5 11 52 28 

Pruning: spur 66  21 61 9 68 67 47 48 

Pruning: mechanical 73  0 25 90 27 22 1 24 

Pruning: minimal 11  2 0 0 0 0 0 0 

Pruning wound treatment: local application 63  41 10 0 2 1 25 14 

Pruning wound treatment: spray unit 

application 39 

 

0 26 6 44 2 19 17 

Sprays (average number) 40  9.7 7.2 7.7 7.0 8.8 9.5 8.3 

Desuckering: hand 54  98 50 47 62 51 66 62 

Desuckering: mechanical 5  0 14 0 2 1 0 4 

Desuckering: chemically 56  1 15 33 5 39 15 17 

Desuckering: other 6  1 6 0 1 5 4 3 

Trims (average number) 21  0.8 1.1 1.0 1.2 0.9 1.5 1.1 

Trellis system: VSP 77  72 25 10 49 72 94 55 

Trellis system: SH SD 25  2 2 7 0 0 4 2 

Trellis system: T-trellis 32  12 6 8 0 0 0 4 
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Trellis system: bush 19  0 1 0 0 0 0 0 

Trellis system: other 26  13 1 6 1 0 1 3 

Trellis system: sprawl 83  1 65 69 50 28 2 35 

Shoot positioning: all shoots positioned 84  85 22 1 15 54 96 47 

Shoot positioning: all shoots one side, 

some/none on other 23 

 

0 1 1 22 3 2 5 

Shoot positioning: other 24  0 1 0 0 0 0 0 

Shoot thinned 77  80 18 1 18 16 51 32 

Leaf plucking: both sides 49  5 0 0 1 7 23 6 

Leaf plucking: one side 43  13 1 0 4 3 10 5 

Leaf plucking: other 11  0 0 0 0 0 0 0 

Irrigation method: drip or micro-spray 43  97 95 84 93 99 93 94 

Irrigation method: spray or sprinkler 39  3 4 10 5 0 3 4 

Irrigation method: furrow or flood 43  0 1 5 1 0 0 1 

Irrigation method: other or not reported 10  0 0 1 1 1 4 1 

Irrigation rate (ML per ha) 87  60 116 619 170 62 101 162 

Irrigation rate (ML per t) 60  14 22 30 25 15 19 20 

Crop thinning: preveraison 27  6 0 1 4 3 7 3 

Crop thinning: veraison 41  24 8 0 13 3 7 9 

Crop thinning: potveraison 59  0 1 0 2 0 15 3 

Crop thinning: multiple times 18  13 5 0 0 3 5 5 

At least one irrigation sensor 57  15 52 56 51 38 41 42 

Regulated deficit irrigation 58  12 40 28 64 34 35 36 

Partial rootzone drying 53  0 0 8 0 0 0 1 

Leaching irrigation 62  0 6 28 27 2 4 10 

Precision viticulture: multi-spectral 

imaging 26 

 

3 6 9 21 10 12 10 

Precision viticulture: soil mapping  38  0 5 5 2 12 5 5 

Nutrition: tissue analysis 43  27 44 45 56 44 52 45 

Nutrition: soil analysis 40  27 38 32 42 53 59 43 

Macronutrient application: N 60  45 60 88 76 55 65 64 

Macronutrient application: P 41  51 47 56 73 61 62 58 

Macronutrient application: K 78  37 44 54 53 71 71 55 

Macronutrient application: Mg 66  17 17 58 58 56 56 42 

Macronutrient application: S 53  6 18 39 29 34 33 26 

Macronutrient application: Ca 68  17 23 57 36 48 51 37 

Micronutrient application: Fe 73  11 14 31 29 14 41 23 

Micronutrient application: Mn 62  11 32 56 47 21 43 34 

Micronutrient application: Zn 79  9 28 62 55 51 58 42 

Micronutrient application: B 59  35 29 42 23 57 59 40 

Micronutrient application: Cu 42  12 15 29 29 22 31 22 

Micronutrient application: Mo 53  9 10 20 43 34 38 25 

Micronutrient application: Al 39  3 1 2 4 2 10 4 

Undervine strip management: herbicide 34  65 88 89 93 89 92 86 

Undervine strip management: cultivation 35  6 3 2 4 2 1 3 

Undervine strip management: slashing 28  28 8 9 3 7 6 10 

Undervine strip management: other 7  1 1 0 0 2 1 1 

Undervine strip mulch added 40  34 31 15 39 27 37 32 
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Mid-row management: herbicide 22  7 6 21 0 8 3 7 

Mid-row management: cultivation 52  13 6 20 1 4 2 7 

Mid-row management: cover crops 53  77 85 53 99 84 95 84 

Mid-row management: other 19  3 4 6 0 4 0 3 

Management of grown cover-crops/swards: 

slashing/mowing 39 

 

100 98 92 100 95 97 97 

Management of grown cover-crops/swards: 

knockdown herbicide 47 

 

0 12 29 4 0 1 7 

Management of grown cover-crops/swards: 

rolling 45 

 

0 2 2 5 0 0 2 

Management of grown cover-crops/swards: 

cultivation 40 

 

7 6 23 0 0 0 5 

Management of grown cover-crops/swards: 

livestock grazing 43 

 

21 31 8 60 51 36 36 

Certified organic 34  1 1 6 1 1 8 3 

Certified biodynamic and organic 16  2 6 0 0 2 1 2 

In 3-year transition to certified organic 29  0 1 1 3 1 0 1 

Red: machine-harvested 84  6 84 100 92 89 61 71 

Red: hand-picked 84  94 16 0 8 11 39 29 

White: machine-harvested 76  18 85 100 70 86 66 70 

White: hand-picked 76  82 15 0 30 14 34 30 

Red: on-harvester destemming 50  0 3 0 13 1 29 9 

White: on-harvester destemming 29  0 3 0 5 5 24 7 

Side-arm discharge 62  50 95 100 88 93 51 79 

On-harvester bins 61  0 5 0 12 7 49 14 

Red: SO2 addition 79  0 86 88 95 93 67 72 

White: SO2 addition 56  15 79 88 54 97 80 69 

Notes: Explained is the percentage of the variance explained by the first four principal components of the PCA. 

The groups of regions are described in Table 3. The average values for each group of regions and all the regions 

combined are percentages unless otherwise stated in brackets after the name of each variable. Estimated with data 

from Nordestgaard (2019). 

 


